Whole genome sequence of the Treponema Fribourg-Blanc: unspecified simian isolate is highly similar to the yaws subspecies

. 2013 ; 7 (4) : e2172. [epub] 20130418

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23638193

BACKGROUND: Unclassified simian strain Treponema Fribourg-Blanc was isolated in 1966 from baboons (Papio cynocephalus) in West Africa. This strain was morphologically indistinguishable from T. pallidum ssp. pallidum or ssp. pertenue strains, and it was shown to cause human infections. METHODOLOGY/PRINCIPAL FINDINGS: To precisely define genetic differences between Treponema Fribourg-Blanc (unclassified simian isolate, FB) and T. pallidum ssp. pertenue strains (TPE), a high quality sequence of the whole Fribourg-Blanc genome was determined with 454-pyrosequencing and Illumina sequencing platforms. Combined average coverage of both methods was greater than 500×. Restriction target sites (n = 1,773), identified in silico, of selected restriction enzymes within the Fribourg-Blanc genome were verified experimentally and no discrepancies were found. When compared to the other three sequenced TPE genomes (Samoa D, CDC-2, Gauthier), no major genome rearrangements were found. The Fribourg-Blanc genome clustered with other TPE strains (especially with the TPE CDC-2 strain), while T. pallidum ssp. pallidum strains clustered separately as well as the genome of T. paraluiscuniculi strain Cuniculi A. Within coding regions, 6 deletions, 5 insertions and 117 substitutions differentiated Fribourg-Blanc from other TPE genomes. CONCLUSIONS/SIGNIFICANCE: The Fribourg-Blanc genome showed similar genetic characteristics as other TPE strains. Therefore, we propose to rename the unclassified simian isolate to Treponema pallidum ssp. pertenue strain Fribourg-Blanc. Since the Fribourg-Blanc strain was shown to cause experimental infection in human hosts, non-human primates could serve as possible reservoirs of TPE strains. This could considerably complicate recent efforts to eradicate yaws. Genetic differences specific for Fribourg-Blanc could then contribute for identification of cases of animal-derived yaws infections.

Zobrazit více v PubMed

Fribourg-Blanc A, Mollaret HH, Niel G (1966) Serologic and microscopic confirmation of treponemosis in Guinea baboons. Bull Soc Pathol Exot Filiales 59: 54–59. PubMed

Fribourg-Blanc A, Mollaret HH (1969) Natural treponematosis of the African primate. Primates Med 3: 113–121. PubMed

Smith JL, David NJ, Indgin S, Israel CW, Levine BM, et al. (1971) Neuro-ophthalmological study of late yaws and pinta. II. The Caracas project. Br J Vener Dis 47: 226–251. PubMed PMC

Cousins D (1984) Notes on the occurence of skin infections in gorillas (Gorilla gorilla). Zool Garten NF Jena 54: 333–338.

Cousins D (2008) Possible goundou in gorillas. Gorilla Journal 37: 22–24 Electronic article.

Felsenfeld O, Wolf RH (1971) Serological reactions with treponemal antigens in nonhuman primates and the natural history of treponematosis in man. Folia Primatol (Basel) 16: 294–305. PubMed

Levrero F, Gatti S, Gautier-Hion A, Menard N (2007) Yaws disease in a wild gorilla population and its impact on the reproductive status of males. Am J Phys Anthropol 132: 568–575. PubMed

Lovell NC, Jurmain R, Kilgore L (2000) Skeletal evidence of probable treponemal infection in free-ranging African apes. Primates 41: 275–290. PubMed

Meder A (1994) Causes of death and diseases of gorillas in the wild. Gorilla J 2: 19–20.

Wallis J, Lee DR (1999) Primate conservation: The prevention of disease transmission. Int J Primatol 20: 803–826.

Knauf S, Batamuzi EK, Mlengeya T, Kilewo M, Lejora IA, et al. (2012) Treponema infection associated with genital ulceration in wild baboons. Vet Pathol 49: 292–303. PubMed

Harper KN, Fyumagwa RD, Hoare R, Wambura PN, Coppenhaver DH, et al. (2012) Treponema pallidum infection in the wild baboons of East Africa: Distribution and genetic characterization of the strains responsible. PLoS One 7: e50882. PubMed PMC

Castellani A (1905) Further observations on parangi (Yaws). Brit Med Jour 1330–1331. PubMed PMC

WHO (1998) The World Health Report 1998-life in the 21century: a vision for all. World Health Organization. pp 132.

Čejková D, Zobaniková M, Chen L, Pospišilová P, Strouhal M, et al. (2012) Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl Trop Dis 6: e1471. PubMed PMC

Roman GC, Roman LN (1986) Occurrence of congenital, cardiovascular, visceral, neurologic, and neuro-ophthalmologic complications in late yaws: a theme for future research. Rev Infect Dis 8: 760–770. PubMed

Centurion-Lara A, Arroll T, Castillo R, Shaffer JM, Castro C, et al. (1997) Conservation of the 15-kilodalton lipoprotein among Treponema pallidum subspecies and strains and other pathogenic treponemes: genetic and antigenic analyses. Infect Immun 65: 1440–1444. PubMed PMC

Centurion-Lara A, Castro C, Castillo R, Shaffer JM, Van Voorhis WC, et al. (1998) The flanking region sequences of the 15-kDa lipoprotein gene differentiate pathogenic treponemes. J Infect Dis 177: 1036–1040. PubMed

Cameron CE, Castro C, Lukehart SA, Van Voorhis WC (1999) Sequence conservation of glycerophosphodiester phosphodiesterase among Treponema pallidum strains. Infect Immun 67: 3168–3170. PubMed PMC

Cameron CE, Lukehart SA, Castro C, Molini B, Godornes C, et al. (2000) Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J Infect Dis 181: 1401–1413. PubMed

Gray RR, Mulligan CJ, Molini BJ, Sun ES, Giacani L, et al. (2006) Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus Treponema . Mol Biol Evol 23: 2220–2233. PubMed

Harper KN, Ocampo PS, Steiner BM, George RW, Silverman MS, et al. (2008) On the origin of the treponematoses: a phylogenetic approach. PLoS Negl Trop Dis 2: e148. PubMed PMC

Harper KN, Liu H, Ocampo PS, Steiner BM, Martin A, et al. (2008) The sequence of the acidic repeat protein (arp) gene differentiates venereal from nonvenereal Treponema pallidum subspecies, and the gene has evolved under strong positive selection in the subspecies that causes syphilis. FEMS Immunol Med Microbiol 53: 322–332. PubMed

Mikalová L, Strouhal M, Čejková D, Zobaniková M, Pospišilová P, et al. (2010) Genome analysis of Treponema pallidum subsp. pallidum and subsp. pertenue strains: most of the genetic differences are localized in six regions. PLoS One 5: e15713. PubMed PMC

Čejková D, Zobaniková M, Pospíšilová P, Strouhal M, Mikalová L, et al. (2012) Structure of rrn operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and T. paraluiscuniculi strains. J Med Microbiol 62: 196–207. PubMed PMC

Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, et al. (2012) Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol 194: 4208–4225. PubMed PMC

Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829. PubMed PMC

Strouhal M, Šmajs D, Matějková P, Sodergren E, Amin AG, et al. (2007) Genome differences between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A. Infect Immun 75: 5859–5866. PubMed PMC

Šmajs D, Zobaniková M, Strouhal M, Čejková D, Dugan-Rocha S, et al. (2011) Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay. PLoS One 6: e20415. PubMed PMC

Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, et al. (2012) Geneious v5.6.5. Available: http://www.geneious.com.

Zobaníková M, Mikolka P, Čejková D, Pospíšilová P, Chen L, et al. (2012) Complete genome sequence of Treponema pallidum strain DAL-1. Stand Genomic Sci 7: 2615838. PubMed PMC

Giacani L, Jeffrey BM, Molini BJ, Le HT, Lukehart SA, et al. (2010) Complete genome sequence and annotation of the Treponema pallidum subsp. pallidum Chicago strain. J Bacteriol 192: 2645–2646. PubMed PMC

Pětrošová H, Zobaníková M, Čejková D, Mikalová L, Pospíšilová P, et al. (2012) Whole genome sequence of Treponema pallidum ssp. pallidum, Strain Mexico A, suggests recombination between Yaws and Syphilis strains. PLoS Negl Trop Dis 6: e1832. PubMed PMC

Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. PubMed

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using Maximum likelihood, Evolutionary distance, and Maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739. PubMed PMC

Fieldsteel AH, Stout JG, Becker FA (1979) Comparative behavior of virulent strains of Treponema pallidum and Treponema pertenue in gradient cultures of various mammalian cells. Infect Immun 24: 337–345. PubMed PMC

Sepetjian M, Guerraz FT, Salussola D, Thivolet J, Monier JC (1969) Contribution to the study of the treponeme isolated from monkeys by A. Fribourg-Blanc. Bull World Health Organ 40: 141–151. PubMed PMC

Castellani A (1907) Experimental Investigations on Framboesia Tropica (Yaws). J Hyg (Lond) 7: 558–569. PubMed PMC

Schöbl O (1928) Experimental yaws in philippine monkeys and a critical consideration of our knowledge concerning framboesia tropica in the light of recent experimental evidence. Philippine J Sci 35: 209.

Nichols HJ (1910) Experimental Yaws in the Monkey and Rabbit. J Exp Med 12: 616–622. PubMed PMC

Liska SL, Perine PL, Hunter EF, Crawford JA, Feeley JC (1982) Isolation and transportation of Treponema pertenue in Golden-Hamsters. Current Microbiology 7: 41–43.

Gastinel P, Vaisman A, Hamelin A, Dunoyer F (1963) Study of a recently isolated strain of Treponema pertenue . Ann Dermatol Syphiligr (Paris) 90: 155–161. PubMed

Turner TB, Hollander DH (1957) Biology of the treponematoses based on studies carried out at the International Treponematosis Laboratory Center of the Johns Hopkins University under the auspices of the World Health Organization. Monogr Ser World Health Organ 3–266. PubMed

Giacani L, Molini B, Godornes C, Barrett L, Van Voorhis W, et al. (2007) Quantitative analysis of tpr gene expression in Treponema pallidum isolates: Differences among isolates and correlation with T-cell responsiveness in experimental syphilis. Infect Immun 75: 104–112. PubMed PMC

Matějková P, Strouhal M, Šmajs D, Norris SJ, Palzkill T, et al. (2008) Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol 8: 76. PubMed PMC

Giacani L, Chattopadhyay S, Centurion-Lara A, Jeffrey BM, Le HT, et al. (2012) Footprint of positive selection in Treponema pallidum subsp. pallidum genome sequences suggests adaptive microevolution of the syphilis pathogen. PLoS Negl Trop Dis 6: e1698. PubMed PMC

Šmajs D, McKevitt M, Howell JK, Norris SJ, Cai WW, et al. (2005) Transcriptome of Treponema pallidum: gene expression profile during experimental rabbit infection. J Bacteriol 187: 1866–1874. PubMed PMC

Haghi F, Peerayeh SN, Siadat SD, Zeighami H (2012) Recombinant outer membrane secretin PilQ(406–770) as a vaccine candidate for serogroup B Neisseria meningitidis . Vaccine 30: 1710–1714. PubMed

Rothschild BM, Hershkovitz I, Rothschild C (1995) Origin of yaws in the Pleistocene. Nature 378: 343–344. PubMed

de Melo FL, de Mello JC, Fraga AM, Nunes K, Eggers S (2010) Syphilis at the crossroad of phylogenetics and paleopathology. PLoS Negl Trop Dis 4: e575. PubMed PMC

Maurice J (2012) WHO plans new yaws eradication campaign. Lancet 379: 1377–1378. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Whole-genome sequencing reveals evidence for inter-species transmission of the yaws bacterium among nonhuman primates in Tanzania

. 2025 Feb ; 19 (2) : e0012887. [epub] 20250226

The hare syphilis agent is related to, but distinct from, the treponeme causing rabbit syphilis

. 2024 ; 19 (8) : e0307196. [epub] 20240812

The genomes of the yaws bacterium, Treponema pallidum subsp. pertenue, of nonhuman primate and human origin are not genomically distinct

. 2023 Sep ; 17 (9) : e0011602. [epub] 20230913

Whole genome sequence of the Treponema pallidum subsp. endemicum strain Iraq B: A subpopulation of bejel treponemes contains full-length tprF and tprG genes similar to those present in T. p. subsp. pertenue strains

. 2020 ; 15 (4) : e0230926. [epub] 20200401

Identification of positively selected genes in human pathogenic treponemes: Syphilis-, yaws-, and bejel-causing strains differ in sets of genes showing adaptive evolution

. 2019 Jun ; 13 (6) : e0007463. [epub] 20190619

Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Indonesia: Modular structure of several treponemal genes

. 2018 Oct ; 12 (10) : e0006867. [epub] 20181010

Nonhuman primates across sub-Saharan Africa are infected with the yaws bacterium Treponema pallidum subsp. pertenue

. 2018 Sep 19 ; 7 (1) : 157. [epub] 20180919

Sequencing of Treponema pallidum subsp. pallidum from isolate UZ1974 using Anti-Treponemal Antibodies Enrichment: First complete whole genome sequence obtained directly from human clinical material

. 2018 ; 13 (8) : e0202619. [epub] 20180821

Gene target selection for loop-mediated isothermal amplification for rapid discrimination of Treponema pallidum subspecies

. 2018 Apr ; 12 (4) : e0006396. [epub] 20180412

Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart

. 2017 Sep ; 11 (9) : e0005894. [epub] 20170908

Human Treponema pallidum 11q/j isolate belongs to subsp. endemicum but contains two loci with a sequence in TP0548 and TP0488 similar to subsp. pertenue and subsp. pallidum, respectively

. 2017 Mar ; 11 (3) : e0005434. [epub] 20170306

Isolation of Treponema DNA from Necrophagous Flies in a Natural Ecosystem

. 2016 Sep ; 11 () : 85-90. [epub] 20160728

A Retrospective Study on Genetic Heterogeneity within Treponema Strains: Subpopulations Are Genetically Distinct in a Limited Number of Positions

. 2015 ; 9 (10) : e0004110. [epub] 20151005

Macrolide Resistance in the Syphilis Spirochete, Treponema pallidum ssp. pallidum: Can We Also Expect Macrolide-Resistant Yaws Strains?

. 2015 Oct ; 93 (4) : 678-83. [epub] 20150727

Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: the genome is related to yaws treponemes but contains few loci similar to syphilis treponemes

. 2014 ; 8 (11) : e3261. [epub] 20141106

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...