Genome differences between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A

. 2007 Dec ; 75 (12) : 5859-66. [epub] 20070924

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17893135

Grantová podpora
R01 DA013759 NIDA NIH HHS - United States
R03 AI69107 NIAID NIH HHS - United States
R01 AI049252 NIAID NIH HHS - United States
R01 AI49252 NIAID NIH HHS - United States
R03 AI069107 NIAID NIH HHS - United States
R01 DE12488 NIDCR NIH HHS - United States
R01 DE13759 NIDCR NIH HHS - United States
R01 EY013759 NEI NIH HHS - United States

The genome of Treponema paraluiscuniculi strain Cuniculi A was compared to the genome of the syphilis spirochete Treponema pallidum subsp. pallidum strain Nichols using DNA microarray hybridization, whole-genome fingerprinting, and DNA sequencing. A DNA microarray of T. pallidum subsp. pallidum Nichols containing all 1,039 predicted open reading frame PCR products was used to identify deletions and major sequence changes in the Cuniculi A genome. Using these approaches, deletions, insertions, and prominent sequence changes were found in 38 gene homologs and six intergenic regions of the Cuniculi A genome when it was compared to the genome of T. pallidum subsp. pallidum Nichols. Most of the observed differences were localized in tpr loci and the vicinity of these loci. In addition, 14 other genes were found to contain frameshift mutations resulting in major changes in protein sequences. Analysis of restriction target sites representing 0.34% of the total genome length and DNA sequencing of three PCR products (0.46% of the total genome length) amplified from Cuniculi A chromosomal regions and comparison to the Nichols genome revealed a sequence similarity of 98.6 to 99.3%. These results are consistent with a close genetic relationship among the T. pallidum strains and subspecies and a strong, but relatively divergent connection between the human and rabbit pathogens.

Zobrazit více v PubMed

Baker-Zander, S. A., and S. A. Lukehart. 1984. Antigenic cross-reactivity between Treponema pallidum and other pathogenic members of the family Spirochaetaceae. Infect. Immun. 46:116-121. PubMed PMC

Baseman, J. B., J. C. Nichols, O. Rumpp, and N. S. Hayes. 1974. Purification of Treponema pallidum from infected rabbit tissue: resolution into two treponemal populations. Infect. Immun. 10:1062-1067. PubMed PMC

Centurion-Lara, A., C. Castro, L. Barrett, C. Cameron, M. Mostowfi, W. C. Van Voorhis, and S. A. Lukehart. 1999. Treponema pallidum major sheath protein homologue TprK is a target of opsonic antibody and the protective immune response. J. Exp. Med. 189:647-656. PubMed PMC

Centurion-Lara, A., C. Godornes, C. Castro, W. C. Van Voorhis, and S. A. Lukehart. 2000. The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles. Infect. Immun. 68:824-831. PubMed PMC

Centurion-Lara, A., E. S. Sun, L. K. Barrett, C. Castro, S. A. Lukehart, and W. C. Van Voorhis. 2000. Multiple alleles of Treponema pallidum repeat gene D in Treponema pallidum isolates. J. Bacteriol. 182:2332-2335. PubMed PMC

Centurion-Lara, A., R. E. LaFond, K. Hevner, C. Godornes, B. J. Molini, W. C. Van Voorhis, and S. A. Lukehart. 2004. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol. Microbiol. 52:1579-1596. PubMed

Fenno, J. C., K. H. Muller, and B. C. McBride. 1996. Sequence analysis, expression, and binding activity of recombinant major outer sheath protein (Msp) of Treponema denticola. J. Bacteriol. 178:2489-2497. PubMed PMC

Fraser, C. M., S. J. Norris, G. M. Weinstock, O. White, G. G. Sutton, R. Dodson, M. Gwinn, E. K. Hickey, R. Clayton, K. A. Ketchum, E. Sodergren, J. M. Hardham, M. P. McLeod, S. Salzberg, J. Peterson, H. Khalak, D. Richardson, J. K. Howell, M. Chidambaram, T. Utterback, L. McDonald, P. Artiach, C. Bowman, M. D. Cotton, C. Fujii, S. Garland, B. Hatch, K. Horst, K. Roberts, M. Sandusky, J. Weidman, H. O. Smith, and J. C. Venter. 1998. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375-388. PubMed

Giacani, L., E. S. Sun, K. Hevner, B. J. Molini, W. C. Van Voorhis, S. A. Lukehart, and A. Centurion-Lara. 2004. Tpr homologs in Treponema paraluiscuniculi Cuniculi A strain. Infect. Immun. 72:6561-6576. PubMed PMC

Graves, S., and J. Downes. 1981. Experimental infection of man with rabbit-virulent Treponema paraluis-cuniculi. Br. J. Vener. Dis. 57:7-10. PubMed PMC

Gray, R., C. Mulligan, B. Molini, E. S. Sun, L. Giacani, C. Godornes, A. Kitchen, S. A. Lukehart, and A. Centurion-Lara. 2006. Molecular evolution of the tprC, D, I, K, G, and J. genes in the pathogenic genus Treponema. Mol. Biol. Evol. 23:2220-2233. PubMed

Hovind-Hougen, K., A. Birch-Andersen, and H. J. Jensen. 1973. Electron microscopy of Treponema cuniculi. Acta Pathol. Microbiol. Scand. Sect. B Microbiol. Immunol. 81:15-28. PubMed

McKevitt, M., M. B. Brinkman, M. McLoughlin, C. Perez, J. K. Howell, G. M. Weinstock, S. J. Norris, and T. Palzkill. 2005. Genome scale identification of Treponema pallidum antigens. Infect. Immun. 73:4445-4450. PubMed PMC

Morgan, C. A., S. A. Lukehart, and W. C. Van Voorhis. 2002a. Immunization with the N-terminal portion of Treponema pallidum repeat protein K attenuates syphilitic lesion development in the rabbit model. Infect. Immun. 70:6811-6816. PubMed PMC

Morgan, C. A., B. J. Molini, S. A. Lukehart, and W. C. Van Voorhis. 2002b. Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. J. Immunol. 169:952-957. PubMed

Morgan, C. A., S. A. Lukehart, and W. C. Van Voorhis. 2003. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K. Infect. Immun. 71:5605-5612. PubMed PMC

Norris, S. J., D. L. Cox, and G. M. Weinstock. 2001. Biology of Treponema pallidum: correlation of functional activities with genome sequence data. J. Mol. Microbiol. Biotechnol. 3:37-62. PubMed

Norris, S. J., V. Pope, R. E. Johnson, and S. A. Larsen. 2003. Treponema and other human host-associated spirochetes, p. 955-971. In P. R. Murray, E. J. Baron, M. A. Pfaller, J. H. Jorgensen, and R. H. Yolken (ed.), Manual of clinical microbiology, 8th ed. ASM Press, Washington, DC.

Pillay, A., H. Liu, C. Y. Chen, B. Holloway, A. W. Sturm, B. Steiner, and S. A. Morse. 1998. Molecular subtyping of Treponema pallidum subspecies pallidum. Sex. Transm. Dis. 25:408-414. PubMed

Rozen, S., and H. J. Skaletsky. 2000. Primer3 on the WWW for general users and for biologist programmers, p. 365-386. In S. Krawetz and S. Misener (ed.), Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ. PubMed

Saeed, A. I., V. Sharov, J. White, J. Li, W. Liang, N. Bhagabati, J. Braisted, M. Klapa, T. Currier, M. Thiagarajan, A. Sturn, M. Snuffin, A. Rezantsev, D. Popov, A. Ryltsov, E. Kostukovich, I. Borisovsky, Z. Liu, A. Vinsavich, V. Trush, and J. Quackenbush. 2003. TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34:374-378. PubMed

Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Schell, R. F., A. A. Azadegan, S. G. Nitskansky, and J. L. LeFrock. 1982. Acquired resistance of hamsters to challenge with homologous and heterologous virulent treponemes. Infect. Immun. 37:617-621. PubMed PMC

Šmajs, D., M. McKevitt, J. K. Howell, S. J. Norris, W. W. Cai, T. Palzkill, and G. M. Weinstock. 2005. Transcriptome of Treponema pallidum: gene expression profile during experimental rabbit infection. J. Bacteriol. 187:1866-1874. PubMed PMC

Turner, T. B., and D. H. Hollander. 1957. Biology of the treponematoses. World Health Organization, Geneva, Switzerland.

Weinstock, G. M., J. M. Hardham, M. P. McLeod, E. Sodergren, and S. J. Norris. 1998. The genome of Treponema pallidum: new light on the agent of syphilis. FEMS Microbiol. Rev. 22:323-332. PubMed

Weinstock, G. M., S. J. Norris, E. Sodergren, and D. Šmajs. 2000. Identification of virulence genes in silico: infectious disease genomics, p. 251-261. In K. A. Brogden, J. A. Roth, T. B. Stanton, C. A. Bolin, F. C. Minion, and M. J. Wannemuehler (ed.), Virulence mechanisms of bacterial pathogens, 3rd ed. ASM Press, Washington, DC.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The hare syphilis agent is related to, but distinct from, the treponeme causing rabbit syphilis

. 2024 ; 19 (8) : e0307196. [epub] 20240812

High prevalence and genetic diversity of Treponema paraluisleporidarum isolates in European lagomorphs

. 2024 Jan 11 ; 12 (1) : e0177423. [epub] 20231214

Penicillin Treatment Failure in Rabbit Syphilis Due to the Persistence of Treponemes (Treponema paraluisleporidarum Ecovar Cuniculus) in the Focus of Infection

. 2021 ; 8 () : 675631. [epub] 20210617

Whole genome sequence of the Treponema pallidum subsp. endemicum strain Iraq B: A subpopulation of bejel treponemes contains full-length tprF and tprG genes similar to those present in T. p. subsp. pertenue strains

. 2020 ; 15 (4) : e0230926. [epub] 20200401

First report of hare treponematosis seroprevalence of European brown hares (Lepus europaeus) in the Czech Republic: seroprevalence negatively correlates with altitude of sampling areas

. 2019 Oct 18 ; 15 (1) : 350. [epub] 20191018

MLST typing of Treponema pallidum subsp. pallidum in the Czech Republic during 2004-2017: Clinical isolates belonged to 25 allelic profiles and harbored 8 novel allelic variants

. 2019 ; 14 (5) : e0217611. [epub] 20190531

A Retrospective Study on Genetic Heterogeneity within Treponema Strains: Subpopulations Are Genetically Distinct in a Limited Number of Positions

. 2015 ; 9 (10) : e0004110. [epub] 20151005

Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: the genome is related to yaws treponemes but contains few loci similar to syphilis treponemes

. 2014 ; 8 (11) : e3261. [epub] 20141106

Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters

. 2013 ; 8 (9) : e74319. [epub] 20130910

Whole genome sequence of the Treponema Fribourg-Blanc: unspecified simian isolate is highly similar to the yaws subspecies

. 2013 ; 7 (4) : e2172. [epub] 20130418

Structure of rrn operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and Treponema paraluiscuniculi strains

. 2013 Feb ; 62 (Pt 2) : 196-207. [epub] 20121018

Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains

. 2012 ; 6 (9) : e1832. [epub] 20120920

Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws

. 2012 Mar ; 12 (2) : 191-202. [epub] 20111215

Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence

. 2012 Jan ; 6 (1) : e1471. [epub] 20120124

Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay

. 2011 ; 6 (5) : e20415. [epub] 20110531

Genome analysis of Treponema pallidum subsp. pallidum and subsp. pertenue strains: most of the genetic differences are localized in six regions

. 2010 Dec 29 ; 5 (12) : e15713. [epub] 20101229

Zobrazit více v PubMed

GENBANK
EF057750, EF137736, EF137737, EF137738, EF137739, EF137740, EF137741, EF137742, EF137743, EF419245, EF419246, EF419247, EF419248, EF419249, EF419250, EF419251, EF419252, EF419253

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...