Structure of rrn operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and Treponema paraluiscuniculi strains
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23082031
PubMed Central
PMC3755535
DOI
10.1099/jmm.0.050658-0
Knihovny.cz E-zdroje
- MeSH
- DNA bakterií chemie genetika MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom bakteriální MeSH
- genotyp MeSH
- mezerníky ribozomální DNA genetika MeSH
- molekulární sekvence - údaje MeSH
- RNA ribozomální 16S genetika MeSH
- RNA ribozomální 23S genetika MeSH
- rRNA operon * MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční delece MeSH
- Treponema pallidum klasifikace genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA bakterií MeSH
- mezerníky ribozomální DNA MeSH
- RNA ribozomální 16S MeSH
- RNA ribozomální 23S MeSH
This study examined the sequences of the two rRNA (rrn) operons of pathogenic non-cultivable treponemes, comprising 11 strains of T. pallidum ssp. pallidum (TPA), five strains of T. pallidum ssp. pertenue (TPE), two strains of T. pallidum ssp. endemicum (TEN), a simian Fribourg-Blanc strain and a rabbit T. paraluiscuniculi (TPc) strain. PCR was used to determine the type of 16S-23S ribosomal intergenic spacers in the rrn operons from 30 clinical samples belonging to five different genotypes. When compared with the TPA strains, TPc Cuniculi A strain had a 17 bp deletion, and the TPE, TEN and Fribourg-Blanc isolates had a deletion of 33 bp. Other than these deletions, only 17 heterogeneous sites were found within the entire region (excluding the 16S-23S intergenic spacer region encoding tRNA-Ile or tRNA-Ala). The pattern of nucleotide changes in the rrn operons corresponded to the classification of treponemal strains, whilst two different rrn spacer patterns (Ile/Ala and Ala/Ile) appeared to be distributed randomly across species/subspecies classification, time and geographical source of the treponemal strains. It is suggested that the random distribution of tRNA genes is caused by reciprocal translocation between repetitive sequences mediated by a recBCD-like system.
The Genome Institute Washington University in St Louis 4444 Forest Park Avenue St Louis MO 63108 USA
Zobrazit více v PubMed
Acinas S. G., Marcelino L. A., Klepac-Ceraj V., Polz M. F. (2004). Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186, 2629–2635 10.1128/JB.186.9.2629-2635.2004 PubMed DOI PMC
Antón A. I., Martínez-Murcia A. J., Rodríguez-Valera F. (1998). Sequence diversity in the 16S–23S intergenic spacer region (ISR) of the rRNA operons in representatives of the Escherichia coli ECOR collection. J Mol Evol 47, 62–72 10.1007/PL00006363 PubMed DOI
Baseman J. B., Nichols J. C., Rumpp J. W., Hayes N. S. (1974). Purification of Treponema pallidum from infected rabbit tissue: resolution into two treponemal populations. Infect Immun 10, 1062–1067 PubMed PMC
Bunikis J., Garpmo U., Tsao J., Berglund J., Fish D., Barbour A. G. (2004). Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology 150, 1741–1755 10.1099/mic.0.26944-0 PubMed DOI
Čejková D., Zobaníková M., Chen L., Pospíšilová P., Strouhal M., Qin X., Mikalová L., Norris S. J., Muzny D. M. & other authors (2012). Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl Trop Dis 6, e1471 10.1371/journal.pntd.0001471 PubMed DOI PMC
Centurion-Lara A., Castro C., van Voorhis W. C., Lukehart S. A. (1996). Two 16S–23S ribosomal DNA intergenic regions in different Treponema pallidum subspecies contain tRNA genes. FEMS Microbiol Lett 143, 235–240 10.1111/j.1574-6968.1996.tb08486.x PubMed DOI
Comstedt P., Asokliene L., Eliasson I., Olsen B., Wallensten A., Bunikis J., Bergström S. (2009). Complex population structure of Lyme borreliosis group spirochete Borrelia garinii in subarctic Eurasia. PLoS ONE 4, e5841 10.1371/journal.pone.0005841 PubMed DOI PMC
Condon C., Philips J., Fu Z. Y., Squires C., Squires C. L. (1992). Comparison of the expression of the seven ribosomal RNA operons in Escherichia coli. EMBO J 11, 4175–4185 PubMed PMC
Darling A. E., Miklós I., Ragan M. A. (2008). Dynamics of genome rearrangement in bacterial populations. PLoS Genet 4, e1000128 10.1371/journal.pgen.1000128 PubMed DOI PMC
de Vries M. C., Siezen R. J., Wijman J. G., Zhao Y., Kleerebezem M., de Vos W. M., Vaughan E. E. (2006). Comparative and functional analysis of the rRNA-operons and their tRNA gene complement in different lactic acid bacteria. Syst Appl Microbiol 29, 358–367 10.1016/j.syapm.2005.11.010 PubMed DOI
Flasarová M., Šmajs D., Matějková P., Woznicová V., Heroldová-Dvoráková M., Votava M. (2006). [Molecular detection and subtyping of Treponema pallidum subsp. pallidum in clinical specimens]. Epidemiol Mikrobiol Imunol 55, 105–111 (in Czech). PubMed
Flasarová M., Pospíšilová P., Mikalová L., Vališová Z., Dastychová E., Strnadel R., Kuklová I., Woznicová V., Zákoucká H., Šmajs D. (2012). Sequencing-based molecular typing of Treponema pallidum strains in the Czech Republic: all identified genotypes are related to the sequence of the SS14 strain. Acta Derm Venereol 92, 669–674 PubMed
Fraser C. M., Casjens S., Huang W. M., Sutton G. G., Clayton R., Lathigra R., White O., Ketchum K. A., Dodson R. & other authors (1997). Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586 10.1038/37551 PubMed DOI
Fraser C. M., Norris S. J., Weinstock G. M., White O., Sutton G. G., Dodson R., Gwinn M., Hickey E. K., Clayton R. & other authors (1998). Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375–388 10.1126/science.281.5375.375 PubMed DOI
Fribourg-Blanc A., Mollaret H. H. (1969). Natural treponematosis of the African primate. Primates Med 3, 113–121 PubMed
Fukunaga M., Okuzako N., Mifuchi I., Arimitsu Y., Seki M. (1992). Organization of the ribosomal RNA genes in Treponema phagedenis and Treponema pallidum. Microbiol Immunol 36, 161–167 PubMed
Gastinel P., Vaisman A., Hamelin A., Dunoyer F. (1963). [Study of a recently isolated strain of Treponema pertenue]. Prophyl Sanit Morale 35, 182–188 (in French). PubMed
Giacani L., Jeffrey B. M., Molini B. J., Le H. T., Lukehart S. A., Centurion-Lara A., Rockey D. D. (2010). Complete genome sequence and annotation of the Treponema pallidum subsp. pallidum Chicago strain. J Bacteriol 192, 2645–2646 10.1128/JB.00159-10 PubMed DOI PMC
Giacani L., Chattopadhyay S., Centurion-Lara A., Jeffrey B. M., Le H. T., Molini B. J., Lukehart S. A., Sokurenko E. V., Rockey D. D. (2012). Footprint of positive selection in Treponema pallidum subsp. pallidum genome sequences suggests adaptive microevolution of the syphilis pathogen. PLoS Negl Trop Dis 6, e1698 10.1371/journal.pntd.0001698 PubMed DOI PMC
Gürtler V. (1999). The role of recombination and mutation in 16S–23S rDNA spacer rearrangements. Gene 238, 241–252 10.1016/S0378-1119(99)00224-3 PubMed DOI
Gürtler V., Stanisich V. A. (1996). New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142, 3–16 10.1099/13500872-142-1-3 PubMed DOI
Hanincová K., Liveris D., Sandigursky S., Wormser G. P., Schwartz I. (2008). Borrelia burgdorferi sensu stricto is clonal in patients with early Lyme borreliosis. Appl Environ Microbiol 74, 5008–5014 10.1128/AEM.00479-08 PubMed DOI PMC
Hardy J. B., Hardy P. H., Oppenheimer E. H., Ryan S. J., Jr, Sheff R. N. (1970). Failure of penicillin in a newborn with congenital syphilis. JAMA 212, 1345–1349 10.1001/jama.1970.03170210051008 PubMed DOI
Harvey S., Hill C. W. (1990). Exchange of spacer regions between rRNA operons in Escherichia coli. Genetics 125, 683–690 PubMed PMC
Hashimoto J. G., Stevenson B. S., Schmidt T. M. (2003). Rates and consequences of recombination between rRNA operons. J Bacteriol 185, 966–972 10.1128/JB.185.3.966-972.2003 PubMed DOI PMC
Indra A., Blaschitz M., Kernbichler S., Reischl U., Wewalka G., Allerberger F. (2010). Mechanisms behind variation in the Clostridium difficile 16S–23S rRNA intergenic spacer region. J Med Microbiol 59, 1317–1323 10.1099/jmm.0.020792-0 PubMed DOI PMC
Kobayashi I. (1992). Mechanisms for gene conversion and homologous recombination: the double-strand break repair model and the successive half crossing-over model. Adv Biophys 28, 81–133 10.1016/0065-227X(92)90023-K PubMed DOI
Lan R. T., Reeves P. R. (1998). Recombination between rRNA operons created most of the ribotype variation observed in the seventh pandemic clone of Vibrio cholerae. Microbiology 144, 1213–1221 10.1099/00221287-144-5-1213 PubMed DOI
Lebuhn M., Bathe S., Achouak W., Hartmann A., Heulin T., Schloter M. (2006). Comparative sequence analysis of the internal transcribed spacer 1 of Ochrobactrum species. Syst Appl Microbiol 29, 265–275 10.1016/j.syapm.2005.11.003 PubMed DOI
Liao D. (2000). Gene conversion drives within genic sequences: concerted evolution of ribosomal RNA genes in bacteria and archaea. J Mol Evol 51, 305–317 PubMed
Liska S. L., Perine P. L., Hunter E. F., Crawford J. A., Feeley J. C. (1982). Isolation and transportation of Treponema pertenue in golden hamsters. Curr Microbiol 7, 41–43 10.1007/BF01570978 DOI
Liu H., Rodes B., Chen C.-Y., Steiner B. (2001). New tests for syphilis: rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I gene. J Clin Microbiol 39, 1941–1946 10.1128/JCM.39.5.1941-1946.2001 PubMed DOI PMC
Liveris D., Wormser G. P., Nowakowski J., Nadelman R., Bittker S., Cooper D., Varde S., Moy F. H., Forseter G. & other authors (1996). Molecular typing of Borrelia burgdorferi from Lyme disease patients by PCR-restriction fragment length polymorphism analysis. J Clin Microbiol 34, 1306–1309 PubMed PMC
Martin D. P., Lemey P., Lott M., Moulton V., Posada D., Lefeuvre P. (2010). rdp3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26, 2462–2463 10.1093/bioinformatics/btq467 PubMed DOI PMC
Matějková P., Strouhal M., Šmajs D., Norris S. J., Palzkill T., Petrosino J. F., Sodergren E., Norton J. E., Singh J. & other authors (2008). Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol 8, 76 10.1186/1471-2180-8-76 PubMed DOI PMC
Matějková P., Flasarová M., Zákoucká H., Boˇrek M., Kremenová S., Arenberger P., Woznicová V., Weinstock G. M., Šmajs D. (2009). Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum. J Med Microbiol 58, 832–836 10.1099/jmm.0.007542-0 PubMed DOI
Nei M., Rooney A. P. (2005). Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39, 121–152 10.1146/annurev.genet.39.073003.112240 PubMed DOI PMC
Nichols H. J., Hough W. H. (1913). Demonstration of Spirochaeta pallida in the cerebrospinal fluid: from a patient with nervous relapse following the use of salvarsan. JAMA 60, 108–110 10.1001/jama.1913.04340020016005 DOI
Pei A., Nossa C. W., Chokshi P., Blaser M. J., Yang L., Rosmarin D. M., Pei Z. (2009). Diversity of 23S rRNA genes within individual prokaryotic genomes. PLoS ONE 4, e5437 10.1371/journal.pone.0005437 PubMed DOI PMC
Pei A. Y., Oberdorf W. E., Nossa C. W., Agarwal A., Chokshi P., Gerz E. A., Jin Z., Lee P., Yang L. & other authors (2010). Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol 76, 3886–3897 10.1128/AEM.02953-09 PubMed DOI PMC
Petes T. D., Hill C. W. (1988). Recombination between repeated genes in microorganisms. Annu Rev Genet 22, 147–168 10.1146/annurev.ge.22.120188.001051 PubMed DOI
Petit M.-A. (2005). Mechanisms of homologous recombination in bacteria. In The Dynamic Bacterial Genome, pp. 3–32 Edited by Mullany P. New York: Cambridge University Press; 10.1017/CBO9780511541544.001 DOI
Pillay A., Liu H., Chen C.-Y., Holloway B., Sturm A. W., Steiner B., Morse S. A. (1998). Molecular subtyping of Treponema pallidum subspecies pallidum. Sex Transm Dis 25, 408–414 10.1097/00007435-199809000-00004 PubMed DOI
Posada D., Crandall K. A. (2001). Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 98, 13757–13762 10.1073/pnas.241370698 PubMed DOI PMC
Rozen S., Skaletsky H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132, 365–386 PubMed
Sadeghifard N., Gürtler V., Beer M., Seviour R. J. (2006). The mosaic nature of intergenic 16S–23S rRNA spacer regions suggests rRNA operon copy number variation in Clostridium difficile strains. Appl Environ Microbiol 72, 7311–7323 10.1128/AEM.01179-06 PubMed DOI PMC
Saitou N., Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425 PubMed
Santoyo G., Romero D. (2005). Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiol Rev 29, 169–183 PubMed
Sawyer S. (1989). Statistical tests for detecting gene conversion. Mol Biol Evol 6, 526–538 PubMed
Schwartz J. J., Gazumyan A., Schwartz I. (1992). rRNA gene organization in the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol 174, 3757–3765 PubMed PMC
Seshadri R., Myers G. S., Tettelin H., Eisen J. A., Heidelberg J. F., Dodson R. J., Davidsen T. M., DeBoy R. T., Fouts D. E. & other authors (2004). Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci U S A 101, 5646–5651 10.1073/pnas.0307639101 PubMed DOI PMC
Šmajs D., Mikalová L., Čejková D., Strouhal M., Zobaníková M., Pospisilova P., Norris S. J., Weinstock G. M. (2011a). Whole genome analyses of treponemes: new targets for strain- and subspecies-specific molecular diagnostics. In Syphilis – Recognition, Description and Diagnosis, pp. 19–34 Edited by Sato N. S. Rijeka, Croatia: InTech; 10.5772/21496 DOI
Šmajs D., Zobaníková M., Strouhal M., Čejková D., Dugan-Rocha S., Pospís˜ilová P., Norris S. J., Albert T., Qin X. & other authors (2011b). Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay. PLoS ONE 6, e20415 10.1371/journal.pone.0020415 PubMed DOI PMC
Smith J. M. (1992). Analyzing the mosaic structure of genes. J Mol Evol 34, 126–129 10.1007/BF00182389 PubMed DOI
Stamm L. V., Bergen H. L. (2000). A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrob Agents Chemother 44, 806–807 10.1128/AAC.44.3.806-807.2000 PubMed DOI PMC
Stamm L. V., Kerner T. C., Jr, Bankaitis V. A., Bassford P. J., Jr (1983). Identification and preliminary characterization of Treponema pallidum protein antigens expressed in Escherichia coli. Infect Immun 41, 709–721 PubMed PMC
Stamm L. V., Bergen H. L., Walker R. L. (2002). Molecular typing of papillomatous digital dermatitis-associated Treponema isolates based on analysis of 16S–23S ribosomal DNA intergenic spacer regions. J Clin Microbiol 40, 3463–3469 10.1128/JCM.40.9.3463-3469.2002 PubMed DOI PMC
Stewart F. J., Cavanaugh C. M. (2007). Intragenomic variation and evolution of the internal transcribed spacer of the rRNA operon in bacteria. J Mol Evol 65, 44–67 10.1007/s00239-006-0235-3 PubMed DOI
Strouhal M., Šmajs D., Matějková P., Sodergren E., Amin A. G., Howell J. K., Norris S. J., Weinstock G. M. (2007). Genome differences between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A. Infect Immun 75, 5859–5866 10.1128/IAI.00709-07 PubMed DOI PMC
Takahashi N. K., Yamamoto K., Kitamura Y., Luo S.-Q., Yoshikura H., Kobayashi I. (1992). Nonconservative recombination in Escherichia coli. Proc Natl Acad Sci U S A 89, 5912–5916 10.1073/pnas.89.13.5912 PubMed DOI PMC
Tamura K., Dudley J., Nei M., Kumar S. (2007). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599 10.1093/molbev/msm092 PubMed DOI
Turner T. B., Hollander D. H. (1957). Biology of the treponematoses based on studies carried out at the International Treponematosis Laboratory Center of the Johns Hopkins University under the auspices of the World Health Organization. Monogr Ser World Health Organ 35, 3–266 PubMed
Wendel G. D., Jr, Sánchez P. J., Peters M. T., Harstad T. W., Potter L. L., Norgard M. V. (1991). Identification of Treponema pallidum in amniotic fluid and fetal blood from pregnancies complicated by congenital syphilis. Obstet Gynecol 78, 890–895 PubMed
Wormser G. P., Brisson D., Liveris D., Hanincová K., Sandigursky S., Nowakowski J., Nadelman R. B., Ludin S., Schwartz I. (2008). Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J Infect Dis 198, 1358–1364 10.1086/592279 PubMed DOI PMC
Woznicová V., Šmajs D., Wechsler D., Matějková P., Flasarová M. (2007). Detection of Treponema pallidum subsp. pallidum from skin lesions, serum, and cerebrospinal fluid in an infant with congenital syphilis after clindamycin treatment of the mother during pregnancy. J Clin Microbiol 45, 659–661 10.1128/JCM.02209-06 PubMed DOI PMC
The hare syphilis agent is related to, but distinct from, the treponeme causing rabbit syphilis
Evolutionary Processes in the Emergence and Recent Spread of the Syphilis Agent, Treponema pallidum
GENBANK
JX120527, JX120528, JX120529, JX120530, JX120531, JX120532, JX120533, JX120534, JX120535, JX120536, JX120537, JX120538, JX120539, JX120540, JX120541, JX120542, JX120543, JX120544, JX120545, JX120546, JX120547, JX120548, JX120549, JX120550, JX120551, JX120552, JX120553, JX120554, JX120555, JX120556, JX120557, JX120558, JX120559, JX120560, JX120561, JX120562, JX120563, JX120564, JX120565