Whole-genome sequencing reveals evidence for inter-species transmission of the yaws bacterium among nonhuman primates in Tanzania
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40009604
PubMed Central
PMC11864524
DOI
10.1371/journal.pntd.0012887
PII: PNTD-D-24-00758
Knihovny.cz E-zdroje
- MeSH
- frambézie * přenos mikrobiologie veterinární epidemiologie MeSH
- fylogeneze MeSH
- genom bakteriální * MeSH
- primáti * mikrobiologie MeSH
- sekvenování celého genomu MeSH
- Treponema pallidum * genetika izolace a purifikace klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Tanzanie epidemiologie MeSH
BACKGROUND: Treponema pallidum subspecies pertenue (TPE) is the causative agent of human and nonhuman primate (NHP) yaws infection. The discovery of yaws bacterium in wild populations of NHPs opened the question of transmission mechanisms within NHPs, and this work aims to take a closer look at the transmission of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Our study determined eleven whole TPE genomes from NHP isolates collected from three national parks in Tanzania: Lake Manyara National Park (NP), Serengeti NP, and Ruaha NP. The bacteria were isolated from four species of NHPs: Chlorocebus pygerythrus (vervet monkey), Cercopithecus mitis (blue monkey), Papio anubis (olive baboon), and Papio cynocephalus (yellow baboon). Combined with previously generated genomes of TPE originating from NHPs in Tanzania (n = 11), 22 whole-genome TPE sequences have now been analyzed. Out of 231 possible combinations of genome-to-genome comparisons, five revealed an unexpectedly high degree of genetic similarity in samples collected from different NHP species, consistent with inter-species transmission of TPE among NHPs. We estimated a substitution rate of TPE of NHP origin, ranging between 1.77 × 10-7 and 3.43 × 10-7 per genomic site per year. CONCLUSIONS/SIGNIFICANCE: The model estimations predicted that the inter-species transmission happened recently, within decades, roughly in an order of magnitude shorter time compared to time needed for the natural diversification of all tested TPE of Tanzanian NHP origin. Moreover, the geographical separation of the sampling sites (NPs) does not preclude TPE transmission between and within NHP species.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Knauf S, Batamuzi EK, Mlengeya T, Kilewo M, Lejora IAV, Nordhoff M, et al.. Treponema infection associated with genital ulceration in wild baboons. Vet Pathol. 2012;49(2):292–303. doi: 10.1177/0300985811402839 PubMed DOI
Knauf S, Gogarten JF, Schuenemann VJ, De Nys HM, Düx A, Strouhal M, et al.. Nonhuman primates across sub-Saharan Africa are infected with the yaws bacterium Treponema pallidum subsp. pertenue. Emerg Microbes Infect. 2018;7(1):157. doi: 10.1038/s41426-018-0156-4 PubMed DOI PMC
Chuma IS, Roos C, Atickem A, Bohm T, Anthony Collins D, Grillová L, et al.. Strain diversity of Treponema pallidum subsp. pertenue suggests rare interspecies transmission in African nonhuman primates. Sci Rep. 2019;9(1):14243. doi: 10.1038/s41598-019-50779-9 PubMed DOI PMC
Asiedu K, Fitzpatrick C, Jannin J. Eradication of yaws: historical efforts and achieving WHO’s 2020 target. PLoS Negl Trop Dis. 2014;8(9):e3016. doi: 10.1371/journal.pntd.0003016 PubMed DOI PMC
Zobaníková M, Strouhal M, Mikalová L, Čejková D, Ambrožová L, Pospíšilová P, et al.. Whole genome sequence of the treponema fribourg-blanc: unspecified simian isolate is highly similar to the yaws subspecies. PLoS Negl Trop Dis. 2013;7(4):e2172. doi: 10.1371/journal.pntd.0002172 PubMed DOI PMC
Mediannikov O, Fenollar F, Davoust B, Amanzougaghene N, Lepidi H, Arzouni J-P, et al.. Epidemic of venereal treponematosis in wild monkeys: a paradigm for syphilis origin. New Microbes New Infect. 2020;35:100670. doi: 10.1016/j.nmni.2020.100670 PubMed DOI PMC
Mubemba B, Gogarten JF, Schuenemann VJ, Düx A, Lang A, Nowak K, et al.. Geographically structured genomic diversity of non-human primate-infecting Treponema pallidum subsp. pertenue. Microb Genom. 2020;6(11):mgen000463. doi: 10.1099/mgen.0.000463 PubMed DOI PMC
Mubemba B, Chanove E, Mätz-Rensing K, Gogarten JF, Düx A, Merkel K, et al.. Yaws disease caused by treponema pallidum subspecies pertenue in wild chimpanzee, Guinea, 2019. Emerg Infect Dis. 2020;26(6):1283–6. doi: 10.3201/eid2606.191713 PubMed DOI PMC
Janečková K, Roos C, Fedrová P, Tom N, Čejková D, Lueert S, et al.. The genomes of the yaws bacterium, Treponema pallidum subsp. pertenue, of nonhuman primate and human origin are not genomically distinct. PLoS Negl Trop Dis. 2023;17(9):e0011602. doi: 10.1371/journal.pntd.0011602 PubMed DOI PMC
Paciência FMD, Rushmore J, Chuma IS, Lipende IF, Caillaud D, Knauf S, et al.. Mating avoidance in female olive baboons (Papio anubis) infected by Treponema pallidum. Sci Adv. 2019;5(12):eaaw9724. doi: 10.1126/sciadv.aaw9724 PubMed DOI PMC
Harper KN, Knauf S. Treponema pallidum Infection in Primates: Clinical Manifestations, Epidemiology, and Evolution of a Stealthy Pathogen. In: Brinkworth JF, Pechenkina K, editors. Primates, Pathogens, and Evolution. New York, NY: Springer; 2013. p. 189–219. doi: 10.1007/978-1-4614-7181-3_7 DOI
Fribourg-Blanc A, Mollaret HH, Niel G. Serologic and microscopic confirmation of treponemosis in Guinea baboons. Bull Soc Pathol Exot Filiales. 1966;59(1):54–9. PubMed
Chuma IS, Batamuzi EK, Collins DA, Fyumagwa RD, Hallmaier-Wacker LK, Kazwala RR, et al.. Widespread treponema pallidum infection in nonhuman primates, Tanzania. Emerg Infect Dis. 2018;24(6):1002–9. doi: 10.3201/eid2406.180037 PubMed DOI PMC
Grillová L, Oppelt J, Mikalová L, Nováková M, Giacani L, Niesnerová A, et al.. Directly sequenced genomes of contemporary strains of syphilis reveal recombination-driven diversity in genes encoding predicted surface-exposed antigens. Front Microbiol. 2019;10:1691. doi: 10.3389/fmicb.2019.01691 PubMed DOI PMC
Maděránková D, Mikalová L, Strouhal M, Vadják Š, Kuklová I, Pospíšilová P, et al.. Identification of positively selected genes in human pathogenic treponemes: syphilis-, yaws-, and bejel-causing strains differ in sets of genes showing adaptive evolution. PLoS Negl Trop Dis. 2019;13(6):e0007463. doi: 10.1371/journal.pntd.0007463 PubMed DOI PMC
Čejková D, Strouhal M, Norris SJ, Weinstock GM, Šmajs D. A retrospective study on genetic heterogeneity within treponema strains: subpopulations are genetically distinct in a limited number of positions. PLoS Negl Trop Dis. 2015;9(10):e0004110. doi: 10.1371/journal.pntd.0004110 PubMed DOI PMC
Šmajs D, Strouhal M, Knauf S. Genetics of human and animal uncultivable treponemal pathogens. Infect Genet Evol. 2018;61:92–107. doi: 10.1016/j.meegid.2018.03.015 PubMed DOI
Čejková D, Zobaníková M, Pospíšilová P, Strouhal M, Mikalová L, Weinstock GM, et al.. Structure of rrn operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and Treponema paraluiscuniculi strains. J Med Microbiol. 2013;62(Pt 2):196–207. doi: 10.1099/jmm.0.050658-0 PubMed DOI PMC
Noda AA, Méndez M, Rodríguez I, Šmajs D. Genetic recombination in treponema pallidum: implications for diagnosis, epidemiology, and vaccine development. Sex Transm Dis. 2022;49(1):e7–10. doi: 10.1097/OLQ.0000000000001497 PubMed DOI
Pla-Díaz M, Sánchez-Busó L, Giacani L, Šmajs D, Bosshard PP, Bagheri HC, et al.. Evolutionary Processes in the Emergence and Recent Spread of the Syphilis Agent, Treponema pallidum. Mol Biol Evol. 2022;39(1):msab318. doi: 10.1093/molbev/msab318 PubMed DOI PMC
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9. doi: 10.1093/molbev/msy096 PubMed DOI PMC
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. Available from: https://www.R-project.org/
Wickham H, Bryan J. readxl: Read Excel Files. 2023. Available from: https://readxl.tidyverse.org, https://github.com/tidyverse/readxl
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York; 2016. Available from: https://ggplot2.tidyverse.org
Wilke CO. cowplot – Streamlined plot theme and plot annotations for ggplot2. 2020. Available from: https://wilkelab.org/cowplot/
Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–74. doi: 10.1007/BF02101694 PubMed DOI
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512–26. doi: 10.1093/oxfordjournals.molbev.a040023 PubMed DOI
Gastinel P, Vaisman A, Hamelin A, Dunoyer F. Study of a recently isolated strain of Treponema pertenue. Prophyl Sanit Morale. 1963;35:182–8. PubMed
Liska SL, Perine PL, Hunter EF, Crawford JA, Feeley JC. Isolation and transportation ofTreponema pertenue in golden hamsters. Curr Microbiol. 1982;7(1):41–3. doi: 10.1007/bf01570978 DOI
Noordhoek GT, Engelkens HJ, Judanarso J, van der Stek J, Aelbers GN, van der Sluis JJ, et al.. Yaws in West Sumatra, Indonesia: clinical manifestations, serological findings and characterisation of new Treponema isolates by DNA probes. Eur J Clin Microbiol Infect Dis. 1991;10(1):12–9. doi: 10.1007/BF01967091 PubMed DOI
Turner TB, Hollander DH. Biology of the treponematoses based on studies carried out at the international treponematosis laboratory center of the johns hopkins university under the auspices of the World Health Organization. Monogr Ser World Health Organ. 1957;(35):3–266. PubMed
Pětrošová H, Pospíšilová P, Strouhal M, Čejková D, Zobaníková M, Mikalová L, et al.. Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters. PLoS One. 2013;8(9):e74319. doi: 10.1371/journal.pone.0074319 PubMed DOI PMC
Beale MA, Noguera-Julian M, Godornes C, Casadellà M, González-Beiras C, Parera M, et al.. Yaws re-emergence and bacterial drug resistance selection after mass administration of azithromycin: a genomic epidemiology investigation. Lancet Microbe. 2020;1(6):e263–71. doi: 10.1016/S2666-5247(20)30113-0 PubMed DOI
Marks M, Fookes M, Wagner J, Butcher R, Ghinai R, Sokana O, et al.. Diagnostics for yaws eradication: insights from direct next-generation sequencing of cutaneous strains of treponema pallidum. Clin Infect Dis. 2018;66(6):818–24. doi: 10.1093/cid/cix892 PubMed DOI PMC
Timothy JWS, Beale MA, Rogers E, Zaizay Z, Halliday KE, Mulbah T, et al.. Epidemiologic and genomic reidentification of yaws, liberia. Emerg Infect Dis. 2021;27(4):1123–32. doi: 10.3201/eid2704.204442 PubMed DOI PMC
Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016;2(1):vew007. doi: 10.1093/ve/vew007 PubMed DOI PMC
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al.. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10(4):e1003537. doi: 10.1371/journal.pcbi.1003537 PubMed DOI PMC
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst Biol. 2018;67(5):901–4. doi: 10.1093/sysbio/syy032 PubMed DOI PMC
Rambaut A. FigTree. Andrew Rambaut Group; 2018. Available from: https://github.com/rambaut/figtree/
Gogarten JF, Düx A, Mubemba B, Pléh K, Hoffmann C, Mielke A, et al.. Tropical rainforest flies carrying pathogens form stable associations with social nonhuman primates. Mol Ecol. 2019;28(18):4242–58. doi: 10.1111/mec.15145 PubMed DOI
Knauf S, Raphael J, Mitjà O, Lejora IAV, Chuma IS, Batamuzi EK, et al.. Isolation of Treponema DNA from Necrophagous Flies in a Natural Ecosystem. EBioMedicine. 2016;11:85–90. doi: 10.1016/j.ebiom.2016.07.033 PubMed DOI PMC
Ferreira da Silva MJ, Kopp GH, Casanova C, Godinho R, Minhós T, Sá R, et al.. Disrupted dispersal and its genetic consequences: comparing protected and threatened baboon populations (Papio papio) in West Africa. PLoS One. 2018;13(4):e0194189. doi: 10.1371/journal.pone.0194189 PubMed DOI PMC
Zinner D, Chuma IS, Knauf S, Roos C. Inverted intergeneric introgression between critically endangered kipunjis and yellow baboons in two disjunct populations. Biol Lett. 2018;14(1):20170729. doi: 10.1098/rsbl.2017.0729 PubMed DOI PMC
Chapman CA, Chapman LJ. Interdemic variation in mixed-species association patterns: common diurnal primates of Kibale National Park, Uganda. Behavioral Ecology and Sociobiology. 2000;47(3):129–39. doi: 10.1007/s002650050003 DOI
Chapman CA, Chapman LJ. Mixed-species primate groups in the kibale forest: Ecological constraints on association. International Journal of Primatology. 1996;17(1):31–50. doi: 10.1007/bf02696157 DOI
Cords M. Vigilance and mixed-species association of some East African forest monkeys. Behav Ecol Sociobiol. 1990;26(4):297–300. doi: 10.1007/bf00178323 DOI
Falótico T, Mendonça-Furtado O, Fogaça MD, Tokuda M, Ottoni EB, Verderane MP. Wild robust capuchin monkey interactions with sympatric primates. Primates. 2021;62(4):659–66. doi: 10.1007/s10329-021-00913-x PubMed DOI
Ihobe H. Interspecific interactions between wild pygmy chimpanzees (Pan paniscus) and red colobus (Colobus badius). Primates. 1990;31(1):109–12. doi: 10.1007/bf02381033 DOI
Rose LM, Perry S, Panger MA, Jack K, Manson JH, Gros-Louis J, et al.. Interspecific interactions between cebus capucinus and other species: data from three costa rican sites. International Journal of Primatology. 2003;24(4):759–96. doi: 10.1023/a:1024624721363 DOI
Mikalová L, Strouhal M, Oppelt J, Grange PA, Janier M, Benhaddou N, et al.. Human Treponema pallidum 11q/j isolate belongs to subsp. endemicum but contains two loci with a sequence in TP0548 and TP0488 similar to subsp. pertenue and subsp. pallidum, respectively. PLoS Negl Trop Dis. 2017;11(3):e0005434. doi: 10.1371/journal.pntd.0005434 PubMed DOI PMC
Pětrošová H, Zobaníková M, Čejková D, Mikalová L, Pospíšilová P, Strouhal M, et al.. Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLoS Negl Trop Dis. 2012;6(9):e1832. doi: 10.1371/journal.pntd.0001832 PubMed DOI PMC
Strouhal M, Mikalová L, Haviernik J, Knauf S, Bruisten S, Noordhoek GT, et al.. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Indonesia: modular structure of several treponemal genes. PLoS Negl Trop Dis. 2018;12(10):e0006867. doi: 10.1371/journal.pntd.0006867 PubMed DOI PMC
Grillová L, Giacani L, Mikalová L, Strouhal M, Strnadel R, Marra C, et al.. Sequencing of Treponema pallidum subsp. pallidum from isolate UZ1974 using anti-treponemal antibodies enrichment: first complete whole genome sequence obtained directly from human clinical material. PLoS One. 2018;13(8):e0202619. doi: 10.1371/journal.pone.0202619 PubMed DOI PMC
Lieberman NAP, Lin MJ, Xie H, Shrestha L, Nguyen T, Huang M-L, et al.. Treponema pallidum genome sequencing from six continents reveals variability in vaccine candidate genes and dominance of Nichols clade strains in Madagascar. PLoS Negl Trop Dis. 2021;15(12):e0010063. doi: 10.1371/journal.pntd.0010063 PubMed DOI PMC
Arora N, Schuenemann VJ, Jäger G, Peltzer A, Seitz A, Herbig A, et al.. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol. 2016;216245. doi: 10.1038/nmicrobiol.2016.245 PubMed DOI
Majander K, Pla-Díaz M, du Plessis L, Arora N, Filippini J, Pezo-Lanfranco L, et al.. Redefining the treponemal history through pre-Columbian genomes from Brazil. Nature. 2024;627(8002):182–8. doi: 10.1038/s41586-023-06965-x PubMed DOI PMC
Lubinza CKC, Lueert S, Hallmaier-Wacker LK, Ngadaya E, Chuma IS, Kazwala RR, et al.. Serosurvey of Treponema pallidum infection among children with skin ulcers in the Tarangire-Manyara ecosystem, northern Tanzania. BMC Infect Dis. 2020;20(1):392. doi: 10.1186/s12879-020-05105-4 PubMed DOI PMC
Hackett CJ. Extent and nature of the yaws problem in Africa. Bull World Health Organ. 1953;8(1–3):129–82; discussion 205-10. PubMed PMC