Identification of positively selected genes in human pathogenic treponemes: Syphilis-, yaws-, and bejel-causing strains differ in sets of genes showing adaptive evolution

. 2019 Jun ; 13 (6) : e0007463. [epub] 20190619

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31216284

BACKGROUND: Pathogenic treponemes related to Treponema pallidum are both human (causing syphilis, yaws, bejel) and animal pathogens (infections of primates, venereal spirochetosis in rabbits). A set of 11 treponemal genome sequences including those of five Treponema pallidum ssp. pallidum (TPA) strains (Nichols, DAL-1, Mexico A, SS14, Chicago), four T. p. ssp. pertenue (TPE) strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), one T. p. ssp. endemicum (TEN) strain (Bosnia A) and one strain (Cuniculi A) of Treponema paraluisleporidarum ecovar Cuniculus (TPeC) were tested for the presence of positively selected genes. METHODOLOGY/PRINCIPAL FINDINGS: A total of 1068 orthologous genes annotated in all 11 genomes were tested for the presence of positively selected genes using both site and branch-site models with CODEML (PAML package). Subsequent analyses with sequences obtained from 62 treponemal draft genomes were used for the identification of positively selected amino acid positions. Synthetic biotinylated peptides were designed to cover positively selected protein regions and these peptides were tested for reactivity with the patient's syphilis sera. Altogether, 22 positively selected genes were identified in the TP genomes and TPA sets of positively selected genes differed from TPE genes. While genetic variability among TPA strains was predominantly present in a number of genetic loci, genetic variability within TPE and TEN strains was distributed more equally along the chromosome. Several syphilitic sera were shown to react with some peptides derived from the protein sequences evolving under positive selection. CONCLUSIONS/SIGNIFICANCE: The syphilis-, yaws-, and bejel-causing strains differed relative to sets of positively selected genes. Most of the positively selected chromosomal loci were identified among the TPA treponemes. The local accumulation of genetic variability suggests that the diversification of TPA strains took place predominantly in a limited number of genomic regions compared to the more dispersed genetic diversity differentiating TPE and TEN strains. The identification of positively selected sites in tpr genes and genes encoding outer membrane proteins suggests their role during infection of human and animal hosts. The driving force for adaptive evolution at these loci thus appears to be the host immune response as supported by observed reactivity of syphilitic sera with some peptides derived from protein sequences showing adaptive evolution.

Zobrazit více v PubMed

Lefébure T, Stanhope MJ. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol. 2007;8: R71 10.1186/gb-2007-8-5-r71 PubMed DOI PMC

Lefébure T, Stanhope MJ. Pervasive, genome-wide positive selection leading to functional divergence in the bacterial genus Campylobacter. Genome Res. 2009;19: 1224–1232. 10.1101/gr.089250.108 PubMed DOI PMC

Petersen L, Bollback JP, Dimmic M, Hubisz M, Nielsen R. 2007. Genes under positive selection in Escherichia coli. Genome Res. 2007;17: 1336–1343. 10.1101/gr.6254707 PubMed DOI PMC

Soyer Y, Orsi RH, Rodriguez-Rivera LD, Sun Q, Wiedmann M. Genome wide evolutionary analyses reveal serotype specific patterns of positive selection in selected Salmonella serotypes. BMC Evol Biol. 2009;9: 264 10.1186/1471-2148-9-264 PubMed DOI PMC

Suerbaum S, Smith JM, Bapumia K, Morelli G, Smith NH, Kunstmann E, et al. Free recombination within Helicobacter pylori. Proc Natl Acad Sci USA. 1998;95: 12619–12624. 10.1073/pnas.95.21.12619 PubMed DOI PMC

Tsai YH, Maron SB, McGann P, Nightingale KK, Wiedmann M, Orsi RH. Recombination and positive selection contributed to the evolution of Listeria monocytogenes lineages III and IV, two distinct and well supported uncommon L. monocytogenes lineages. Infect Genet Evol. 2011;11: 1881–1890. 10.1016/j.meegid.2011.08.001 PubMed DOI PMC

Xu Z, Chen H, Zhou R. Genome-wide evidence for positive selection and recombination in Actinobacillus pleuropneumoniae. BMC Evol Biol. 2011;11: 203 10.1186/1471-2148-11-203 PubMed DOI PMC

Yu D, Jin Y, Yin Z, Ren H, Zhou W, Liang L, et al. A genome-wide identification of genes undergoing recombination and positive selection in Neisseria. Biomed Res Int. 2014;2014: 815672 10.1155/2014/815672 PubMed DOI PMC

Fribourg-Blanc A, Mollaret HH, Niel G. Serologic and microscopic confirmation of treponemosis in Guinea baboons. Bull Soc Pathol Exot Filiales. 1966;59: 54–59. PubMed

Fribourg-Blanc A, Mollaret HH. Natural treponematosis of the African primate. Primates Med. 1969;3: 113–121. PubMed

Knauf S, Batamuzi EK, Mlengeya T, Kilewo M, Lejora IA, Nordhoff M, et al. Treponema infection associated with genital ulceration in wild baboons. Vet Pathol. 2012;49: 292–303. 10.1177/0300985811402839 PubMed DOI

Zobaníková M, Strouhal M, Mikalová L, Čejková D, Ambrožová L, Pospíšilová P, et al. Whole genome sequence of the Treponema Fribourg-Blanc: unspecified simian isolate is highly similar to the yaws subspecies. PLoS Negl Trop Dis. 2013;7: e2172 10.1371/journal.pntd.0002172 PubMed DOI PMC

Jacobsthal E. Untersuchungen uber eine syphilisahnliche Spontanerkrankungen des Kaninchens (Paralues cuniculi). Derm Wschr. 1920;71: 569–571.

Smith JL, Pesetsky BR. The current status of Treponema cuniculi. Review of the literature. Br J Vener Dis. 1967;43: 117–127. 10.1136/sti.43.2.117 PubMed DOI PMC

Lumeij JT, Mikalová L, Šmajs D. Is there a difference between hare syphilis and rabbit syphilis? Cross infection experiments between rabbits and hares. Vet Microbiol. 2013;164: 190–194. 10.1016/j.vetmic.2013.02.001 PubMed DOI

Edmondson DG, Hu B, Norris SJ. Long-Term In Vitro Culture of the Syphilis Spirochete Treponema pallidum subsp. pallidum. MBio 2018;9: e01153–18. 10.1128/mBio.01153-18 PubMed DOI PMC

Šmajs D, Norris SJ, Weinstock GM. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol. 2012;12: 191–202. 10.1016/j.meegid.2011.12.001 PubMed DOI PMC

Šmajs D, Strouhal M, Knauf S. Genetics of human and animal uncultivable treponemal pathogens. Infect Genet Evol. 2018;61: 92–107. 10.1016/j.meegid.2018.03.015 PubMed DOI

Čejková D, Zobaníková M, Chen L, Pospíšilová P, Strouhal M, Qin X, et al. Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl Trop Dis. 2012;6: e1471 10.1371/journal.pntd.0001471 PubMed DOI PMC

Štaudová B, Strouhal M, Zobaníková M, Čejková D, Fulton LL, Chen L, et al. 2014. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: the genome is related to yaws treponemes but contains few loci similar to syphilis treponemes. PLoS Negl Trop Dis. 2014;8: e3261 10.1371/journal.pntd.0003261 PubMed DOI PMC

Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 1998;281: 375–388. PubMed

Giacani L, Jeffrey BM, Molini BJ, Le HT, Lukehart SA, Centurion-Lara A, et al. Complete genome sequence and annotation of the Treponema pallidum subsp pallidum Chicago strain. J Bacteriol. 2010;192: 2645–2646. 10.1128/JB.00159-10 PubMed DOI PMC

Giacani L, Iverson-Cabral SL, King JC, Molini BJ, Lukehart SA, Centurion-Lara A. Complete genome sequence of the Treponema pallidum subsp. pallidum Sea81-4 Strain. Genome Announc. 2014; 2: e00333–14. 10.1128/genomeA.00333-14 PubMed DOI PMC

Matějková P, Strouhal M, Šmajs D, Norris SJ, Palzkill T, Petrosino JF, et al. Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol. 2008;8: 76 10.1186/1471-2180-8-76 PubMed DOI PMC

Pětrošová H, Zobaníková M, Čejková D, Mikalová L, Pospíšilová P, Strouhal M, et al. Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLoS Negl Trop Dis. 2012;6: e1832 10.1371/journal.pntd.0001832 PubMed DOI PMC

Pětrošová H, Pospíšilová P, Strouhal M, Čejková D, Zobaníková M, Mikalová L, et al. Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters. PLoS One. 2013;8: e74319 10.1371/journal.pone.0074319 PubMed DOI PMC

Šmajs D, Zobaníková M, Strouhal M, Čejková D, Dugan-Rocha S, Pospíšilová P, et al. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay. PLoS One. 2011;6: e20415 10.1371/journal.pone.0020415 PubMed DOI PMC

Strouhal M, Mikalová L, Havlíčková P, Tenti P, Čejková D, Rychlík I, et al. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart. PLoS Negl Trop Dis. 2017;11: e0005894 10.1371/journal.pntd.0005894 PubMed DOI PMC

Zobaníková M, Mikolka P, Čejková D, Pospíšilová P, Chen L, Strouhal M, et al. Complete genome sequence of Treponema pallidum strain DAL-1. Stand Genomic Sci. 2012;10: 12–21. PubMed PMC

Arora N, Schuenemann VJ, Jäger G, Peltzer A, Seitz A, Herbig A, et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol. 2016;2: 16245 10.1038/nmicrobiol.2016.245 PubMed DOI

Pinto M, Borges V, Antelo M, Pinheiro M, Nunes A, Azevedo J, et al. Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat Microbiol. 2016;2: 16190 10.1038/nmicrobiol.2016.190 PubMed DOI

Sun J, Meng Z, Wu K, Liu B, Zhang S, Liu Y, et al. Tracing the origin of Treponema pallidum in China using next-generation sequencing. Oncotarget. 2016;7: 42904–42918. PubMed PMC

Marks M., Fookes M., Wagner J., Butcher R., Ghinai R., Sokana O., Sarkodie Y.A., Lukehart S.A., Solomon A.W., Mabey D.C.W., Thomson N. 2018. Diagnostics for Yaws Eradication: Insights From Direct Next-Generation Sequencing of Cutaneous Strains of Treponema pallidum. Clin Infect Dis. 66:818–824. 10.1093/cid/cix892 PubMed DOI PMC

Seshadri R, Myers GS, Tettelin H, Eisen JA, Heidelberg JF, Dodson RJ, et al. Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci USA. 2004;101: 5646–5651. 10.1073/pnas.0307639101 PubMed DOI PMC

Walker EM, Arnett JK, Heath JD, Norris SJ. Treponema pallidum subsp. pallidum has a single, circular chromosome with a size of approximately 900 kilobase pairs. Infect Immun. 1991;59: 2476–2479. PubMed PMC

Čejková D, Zobaníková M, Pospíšilová P, Strouhal M, Mikalová L, Weinstock GM, et al. Structure of rrn operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and Treponema paraluiscuniculi strains. J Med Microbiol. 2013;62: 196–207. 10.1099/jmm.0.050658-0 PubMed DOI PMC

Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, Van Voorhis WC, et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol. 2004;52: 1579–1596. 10.1111/j.1365-2958.2004.04086.x PubMed DOI

Gray RR, Mulligan CJ, Molini BJ, Sun ES, Giacani L, Godornes C, et al. Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus Treponema. Mol Biol Evol. 2006;23: 2220–2233. 10.1093/molbev/msl092 PubMed DOI

Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, Molini BJ, et al. Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol. 2012;194: 4208–4225. 10.1128/JB.00863-12 PubMed DOI PMC

Čejková D, Strouhal M, Norris SJ, Weinstock GM, Šmajs D. A retrospective study on genetic heterogeneity within Treponema strains: subpopulations are genetically distinct in a limited number of positions. PLoS Negl Trop Dis. 2015;9: e0004110 10.1371/journal.pntd.0004110 PubMed DOI PMC

Turner TB, Hollander DH. Biology of the treponematoses based on studies carried out at the International Treponematosis Laboratory Center of the Johns Hopkins University under the auspices of the World Health Organization. Monogr Ser World Health Organ. 1957;35: 3–266. PubMed

Nichols HJ, Hough WH. Demonstration of Spirochaeta pallida in the cerebrospinal fluid. JAMA-J Am Med Assoc.1913;60: 108–110.

Wendel GD Jr., Sanchez PJ, Peters MT, Harstad TW, Potter LL, Norgard MV. Identification of Treponema pallidum in amniotic fluid and fetal blood from pregnancies comlicated by congenital syphilis. Obstet Gynecol. 1991;78: 890–895. PubMed

Stamm LV, Kerner TC Jr., Bankaitis VA, Bassford PJ Jr. Identification and preliminary characterization of Treponema pallidum protein antigens expressed in Escherichia coli. Infect Immun. 1983;41: 709–721. PubMed PMC

Liska SL, Perine PL, Hunter EF, Crawford JA, Feeley JC. Isolation and transportation of Treponema pertenue in golden hamsters. Curr Microbiol. 1982;7: 41–43.

Gastinel P, Vaisman A, Hamelin A, Dunoyer F. Study of a recently isolated strain of Treponema pertenue. Ann Dermatol Syphiligr Paris. 1963;90: 155–161. PubMed

Turner TB, Hollander DH. Studies on treponemes from cases of endemic syphilis. Bull World Health Organ.1952;7: 75–81. PubMed PMC

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;12: 2725–2729. PubMed PMC

Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16: 111–120. PubMed

Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol. 1992;9: 678–687. 10.1093/oxfordjournals.molbev.a040752 PubMed DOI

Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evolution. 1993;10: 512–526. PubMed

Robinson DR, Foulds LR. Comparison of phylogenetic trees. Math Biosci. 1981;53: 131–147.

Schliep K, Potts AJ, Morrison, DA, Grimm GW. Intertwining phylogenetic trees and networks. Meth Ecol Evol. 2017;8: 1212–1220.

Nei M., Kumar S. Molecular evolution and phylogenetics. Oxford: Oxford University Press; 2000.

Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997;13: 555–556. PubMed

Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24: 1586–1591. 10.1093/molbev/msm088 PubMed DOI

Xu B, Yang Z. PAMLX: a graphical user interface for PAML. Mol Biol Evol. 2013;30: 2723–2724. 10.1093/molbev/mst179 PubMed DOI

Yang Z, Wong WSW, Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol.2005;22: 1107–1118. 10.1093/molbev/msi097 PubMed DOI

Wong WSW, Yang Z, Goldman N, Nielsen R. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics. 2004;168: 1041–1051. 10.1534/genetics.104.031153 PubMed DOI PMC

Yang Z, Nielsen R, Goldman N, Pedersen AMK. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics. 2000;155: 431–449. PubMed PMC

Yang Z, Swanson WJ, Vacquier VD. Maximum likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Mol Biol Evol. 2000;17: 1446–1455. 10.1093/oxfordjournals.molbev.a026245 PubMed DOI

Yang Z, Nielsen R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol. 2002;19: 908–917. 10.1093/oxfordjournals.molbev.a004148 PubMed DOI

Yang Z, dos Reis M. Statistical poperties of the branch-site test of positive selection. Mol Biol Evol. 2011;28: 1217–1228. 10.1093/molbev/msq303 PubMed DOI

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018;35: 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC

Grillová L, Noda AA, Lienhard R, Blanco O, Rodríguez I, Šmajs D. Multilocus sequence typing of Treponema pallidum subsp. pallidum in Cuba from 2012 to 2017. J Infect Dis. 2018:October 16 10.1093/infdis/jiy604 [Epub ahead of print] PubMed DOI

Harper K.N., Ocampo P.S., Steiner B.M., George R.W., Silverman M.S., Bolotin S., et al. 2008. On the origin of the treponematoses: a phylogenetic approach. PLoS Negl Trop Dis. 2: e148 10.1371/journal.pntd.0000148 PubMed DOI PMC

Mikalová L, Strouhal M, Oppelt J, Grange PA, Janier M, Benhaddou N, et al. Human Treponema pallidum 11q/j isolate belongs to subsp. endemicum but contains two loci with a sequence in TP0548 and TP0488 similar to subsp. pertenue and subsp. pallidum, respectively. PLoS Negl Trop Dis. 2017;11: e0005434 10.1371/journal.pntd.0005434 PubMed DOI PMC

Strouhal M, Mikalová L, Haviernik J, Knauf S, Bruisten S, Oppelt J, et al. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Indonesia: modular structure of several treponemal genes. PLoS Negl Trop Dis. 2018;forthcoming. PubMed PMC

Naqvi AA, Shahbaaz M, Ahmad F, Hassan MI. Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum. PLoS One. 2015;10: e0124177 10.1371/journal.pone.0124177 PubMed DOI PMC

Radolf JD, Kumar S. The Treponema pallidum outer membrane. Curr Top Microbiol Immunol. 2017; 10.1007/82_2017_44 PubMed DOI PMC

Centurion-Lara A, Giacani L, Godornes C, Molini BJ, Brinck Reid T, Lukehart SA. Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop Dis. 2013;7: e2222 10.1371/journal.pntd.0002222 PubMed DOI PMC

Wang G, Humayun MZ, Taylor DE. Mutation as an origin of genetic variability in Helicobacter pylori. Trends Microbiol. 1999;7: 488–493. PubMed

Radolf JD, Deka RK, Anand A, Šmajs D, Norgard MV, Yang XF. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol. 2016;14: 744–759. 10.1038/nrmicro.2016.141 PubMed DOI PMC

Grillová L, Bawa T, Gonzales F, Nieselt K, Mikalová L, Gayet-Ageron A, et al. Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme. PLoS One. 2018;13: e0200773 10.1371/journal.pone.0200773 PubMed DOI PMC

Pospíšilová P, Grange PA, Grillová L, Mikalová L, Janier M, Benhaddou N, et al. Multi-locus sequence typing of Treponema pallidum subsp. pallidum present in clinical samples from France: infecting treponemes are genetically diverse and belong to 18 genotypes. PLoS One. 2018;13: e0201068 10.1371/journal.pone.0201068 PubMed DOI PMC

Grange PA, Allix-Beguec C, Chanal J, Benhaddou N, Gerhardt P, Morini JP, et al. Molecular subtyping of Treponema pallidum in Paris, France. Sex Transm Dis. 2013;40: 641–644. 10.1097/OLQ.0000000000000006 PubMed DOI

Grange PA, Mikalová L, Gaudin C, Strouhal M, Janier M, Benhaddou N, et al. Treponema pallidum 11qj subtype may correspond to a Treponema pallidum subsp. endemicum strain. Sex Transm Dis. 2016;43: 517–518. 10.1097/OLQ.0000000000000474 PubMed DOI

Mikalová L, Strouhal M, Grillová L, Šmajs D. The molecular typing data of recently identified subtype 11q/j of Treponema pallidum subsp. pallidum suggest imported case of yaws. Sex Transm Dis. 2014;41: 552–553. 10.1097/OLQ.0000000000000165 PubMed DOI

Mulligan CJ, Norris SJ, Lukehart SA. 2008. Molecular studies in Treponema pallidum evolution: toward clarity? PLoS Negl Trop Dis. 2008;2: e184 10.1371/journal.pntd.0000184 PubMed DOI PMC

Lukehart SA, Giacani L. When is syphilis not syphilis? Or is it? Sex Transm Dis. 2014;41: 554–555. 10.1097/OLQ.0000000000000179 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Whole-genome sequencing reveals evidence for inter-species transmission of the yaws bacterium among nonhuman primates in Tanzania

. 2025 Feb ; 19 (2) : e0012887. [epub] 20250226

The hare syphilis agent is related to, but distinct from, the treponeme causing rabbit syphilis

. 2024 ; 19 (8) : e0307196. [epub] 20240812

High prevalence and genetic diversity of Treponema paraluisleporidarum isolates in European lagomorphs

. 2024 Jan 11 ; 12 (1) : e0177423. [epub] 20231214

Low genetic diversity of Treponema pallidum ssp. pertenue (TPE) isolated from patients' ulcers in Namatanai District of Papua New Guinea: Local human population is infected by three TPE genotypes

. 2024 Jan ; 18 (1) : e0011831. [epub] 20240102

The genomes of the yaws bacterium, Treponema pallidum subsp. pertenue, of nonhuman primate and human origin are not genomically distinct

. 2023 Sep ; 17 (9) : e0011602. [epub] 20230913

Evolutionary Processes in the Emergence and Recent Spread of the Syphilis Agent, Treponema pallidum

. 2022 Jan 07 ; 39 (1) : .

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...