Evolutionary Processes in the Emergence and Recent Spread of the Syphilis Agent, Treponema pallidum

. 2022 Jan 07 ; 39 (1) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34791386

Grantová podpora
U19 AI144133 NIAID NIH HHS - United States

The incidence of syphilis has risen worldwide in the last decade in spite of being an easily treated infection. The causative agent of this sexually transmitted disease is the bacterium Treponema pallidum subspecies pallidum (TPA), very closely related to subsp. pertenue (TPE) and endemicum (TEN), responsible for the human treponematoses yaws and bejel, respectively. Although much focus has been placed on the question of the spatial and temporary origins of TPA, the processes driving the evolution and epidemiological spread of TPA since its divergence from TPE and TEN are not well understood. Here, we investigate the effects of recombination and selection as forces of genetic diversity and differentiation acting during the evolution of T. pallidum subspecies. Using a custom-tailored procedure, named phylogenetic incongruence method, with 75 complete genome sequences, we found strong evidence for recombination among the T. pallidum subspecies, involving 12 genes and 21 events. In most cases, only one recombination event per gene was detected and all but one event corresponded to intersubspecies transfers, from TPE/TEN to TPA. We found a clear signal of natural selection acting on the recombinant genes, which is more intense in their recombinant regions. The phylogenetic location of the recombination events detected and the functional role of the genes with signals of positive selection suggest that these evolutionary processes had a key role in the evolution and recent expansion of the syphilis bacteria and significant implications for the selection of vaccine candidates and the design of a broadly protective syphilis vaccine.

Zobrazit více v PubMed

Achtman M. 2008. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol. 62:53–70. PubMed

Achtman M. 2012. Insights from genomic comparisons of genetically monomorphic bacterial pathogens. Philos Trans R Soc Lond B Biol Sci. 367(1590):860–867. PubMed PMC

Anisimova M, Nielsen R, Yang Z.. 2003. Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164(3):1229–1236. PubMed PMC

Arora N, Schuenemann VJ, Jäger G, Peltzer A, Seitz A, Herbig A, Strouhal M, Grillová L, Sánchez-Busó L, Kühnert D, et al.2016. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol. 2:16245. PubMed

Awadalla P. 2003. The evolutionary genomics of pathogen recombination. Nat Rev Genet. 4(1):50–60. PubMed

Beale MA, Lukehart SA.. 2020. Archaeogenetics: what can ancient genomes tell us about the origin of syphilis? Curr Biol. 30(19):R1092–R1095. PubMed

Beale MA, Marks M, Sahi SK, Tantalo LC, Nori AV, French P, Lukehart SA, Marra CM, Thomson NR.. 2019. Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages. Nat Commun. 10(1):3255. PubMed PMC

Beamud B, Bracho MA, González-Candelas F.. 2019. Characterization of new recombinant forms of HIV-1 from the Comunitat Valenciana (Spain) by phylogenetic incongruence. Front Microbiol. 10:1006. PubMed PMC

Brinkman MB, McGill MA, Pettersson J, Rogers A, Matejková P, Šmajs D, Weinstock GM, Norris SJ, Palzkill T.. 2008. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun. 76(5):1848–1857. PubMed PMC

Brocchieri L. 2001. Phylogenetic inferences from molecular sequences: review and critique. Theor Popul Biol. 59(1):27–40. PubMed

Čejková D, Zobaníková M, Chen L, Pospíšilová P, Strouhal M, Qin X, Mikalová L, Norris SJ, Muzny DM, Gibbs RA, et al.2012. Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl Trop Dis. 6(1):e1471. PubMed PMC

Čejková D, Zobaníková M, Pospíšilová P, Strouhal M, Mikalová L, Weinstock GM, Šmajs D.. 2013. Structure of rrn operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and Treponema paraluiscuniculi strains. J Med Microbiol. 62(Pt 2):196–207. PubMed PMC

Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, Van Voorhis WC, Lukehart SA.. 2004. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol. 52(6):1579–1596. PubMed

Chiner-Oms Á, Sánchez-Busó L, Corander J, Gagneux S, Harris SR, Young D, González-Candelas F, Comas I.. 2019. Genomic determinants of speciation and spread of the MTB complex. Sci Adv. 5:eaaw3307. PubMed PMC

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM.. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92. PubMed PMC

Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris SR.. 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43(3):e15. PubMed PMC

Davies J, Davies D.. 2010. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 74(3):417–433. PubMed PMC

Degnan JH, DeGiorgio M, Bryant D, Rosenberg NA.. 2009. Properties of consensus methods for inferring species trees from gene trees. Syst Biol. 58(1):35–54. PubMed PMC

Didelot X, Maiden MCJ.. 2010. Impact of recombination on bacterial evolution. Trends Microbiol. 18(7):315–322. PubMed PMC

Didelot X, Wilson DJ.. 2015. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol. 11(2):e1004041. PubMed PMC

Francés-Cuesta C, Sánchez-Hellín V, Gomila B, González-Candelas F.. 2021. Is there a widespread clone of Serratia marcescens producing outbreaks worldwide? J Hosp Infect. 108:7–14. PubMed

Gagneux S. 2018. Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol. 16(4):202–213. PubMed

Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, Molini BJ, Benzler M, Hartig JS, Lukehart SA, Centurion-Lara A.. 2012. Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol. 194(16):4208–4225. PubMed PMC

Giacani L, Chattopadhyay S, Centurion-Lara A, Jeffrey BM, Le HT, Molini BJ, Lukehart SA, Sokurenko EV, Rockey DD.. 2012. Footprint of positive selection in Treponema pallidum subsp. pallidum genome sequences suggests adaptive microevolution of the syphilis pathogen. PLoS Negl Trop Dis. 6(6):e1698. PubMed PMC

Godornes C, Giacani L, Barry AE, Mitja O, Lukehart SA.. 2017. Development of a Multilocus Sequence Typing (MLST) scheme for Treponema pallidum subsp. pertenue: application to yaws in Lihir Island, Papua New Guinea. PLoS Negl Trop Dis. 11(12):e0006113. PubMed PMC

Gray RR, Mulligan CJ, Molini BJ, Sun ES, Giacani L, Godornes C, Kitchen A, Lukehart SA, Centurion-Lara A.. 2006. Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus Treponema. Mol Biol Evol. 23(11):2220–2233. PubMed

Grillová L, Bawa T, Mikalová L, Gayet-Ageron A, Nieselt K, Strouhal M, Sednaoui P, Ferry T, Cavassini M, Lautenschlager S, et al.2018. Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme. PLoS One 13(7):e0200773. PubMed PMC

Grillová L, Oppelt J, Mikalová L, Nováková M, Giacani L, Niesnerová A, Noda AA, Mechaly AE, Pospíšilová P, Čejková D, et al.2019. Directly sequenced genomes of contemporary strains of syphilis reveal recombination-driven diversity in genes encoding predicted surface-exposed antigens. Front Microbiol. 10:1691. PubMed PMC

Harper KN, Ocampo PS, Steiner BM, George RW, Silverman MS, Bolotin S, Pillay A, Saunders NJ, Armelagos GJ.. 2008. On the origin of the treponematoses: a phylogenetic approach. PLoS Negl Trop Dis. 2(1):e148. PubMed PMC

Joseph SJ, Didelot X, Gandhi K, Dean D, Read TD.. 2011. Interplay of recombination and selection in the genomes of Chlamydia trachomatis. Biol Direct. 6:28. PubMed PMC

Kumar S, Caimano MJ, Anand A, Dey A, Hawley KL, LeDoyt ME, La Vake CJ, Cruz AR, Ramirez LG, Paštěková L, et al.2018. Sequence variation of rare outer membrane protein β-barrel domains in clinical strains provides insights into the evolution of Treponema pallidum subsp. pallidum, the syphilis spirochete. mBio 9(3):e01006–e01018. PubMed PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K.. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549. PubMed PMC

Lefébure T, Stanhope MJ.. 2007. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol. 8(5):R71. PubMed PMC

Li C. 2014. A Burrows-Wheeler transform based method for DNA sequence comparison. Comput Biol Bioinformatics. 2(3):33.

Liu X, Gutacker MM, Musser JM, Fu Y-X.. 2006. Evidence for recombination in Mycobacterium tuberculosis. J Bacteriol. 188(23):8169–8177. PubMed PMC

Maddison WP, Knowles LL.. 2006. Inferring phylogeny despite incomplete lineage sorting. Syst Biol. 55(1):21–30. PubMed

Maděránková D, Mikalová L, Strouhal M, Vadják Š, Kuklová I, Pospíšilová P, Krbková L, Koščová P, Provazník I, Šmajs D.. 2019. Identification of positively selected genes in human pathogenic treponemes: syphilis-, yaws-, and bejel-causing strains differ in sets of genes showing adaptive evolution. PLoS Negl Trop Dis. 13(6):e0007463. PubMed PMC

Majander K, Pfrengle S, Kocher A, Neukamm J, du Plessis L, Pla-Díaz M, Arora N, Akgül G, Salo K, Schats R, et al.2020. Ancient bacterial genomes reveal a high diversity of Treponema pallidum strains in early Modern Europe. Curr Biol. 30(19):3788–3803.e10. PubMed

Marks M, Fookes M, Wagner J, Butcher R, Ghinai R, Sokana O, Sarkodie Y-A, Lukehart SA, Solomon AW, Mabey DCW, et al.2018. Diagnostics for yaws eradication: insights from direct next-generation sequencing of cutaneous strains of Treponema pallidum. Clin Infect Dis. 66(6):818–824. PubMed PMC

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al.2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20(9):1297–1303. PubMed PMC

Micallef L, Rodgers P.. 2014. euler APE: drawing area-proportional 3-Venn diagrams using ellipses. PLoS One 9(7):e101717. PubMed PMC

Mikalová L, Janečková K, Nováková M, Strouhal M, Čejková D, Harper KN, Šmajs D.. 2020. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Iraq B: a subpopulation of bejel treponemes contains full-length tprF and tprG genes similar to those present in T. p. subsp. pertenue strains. PLoS One 15(4):e0230926. PubMed PMC

Mikalová L, Strouhal M, Oppelt J, Grange PA, Janier M, Benhaddou N, Dupin N, Šmajs D.. 2017. Human Treponema pallidum 11q/j isolate belongs to subsp. endemicum but contains two loci with a sequence in TP0548 and TP0488 similar to subsp. pertenue and subsp. pallidum, respectively. PLoS Negl Trop Dis. 11(3):e0005434. PubMed PMC

Murrell B, Weaver S, Smith MD, Wertheim JO, Murrell S, Aylward A, Eren K, Pollner T, Martin DP, Smith DM, et al.2015. Gene-wide identification of episodic selection. Mol Biol Evol. 32(5):1365–1371. PubMed PMC

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ.. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274. PubMed PMC

Okonechnikov K, Conesa A, García-Alcalde F.. 2016. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32(2):292–294. PubMed PMC

Peltzer A, Jäger G, Herbig A, Seitz A, Kniep C, Krause J, Nieselt K.. 2016. EAGER: efficient ancient genome reconstruction. Genome Biol. 17:60. PubMed PMC

Pětrošová H, Zobaníková M, Čejková D, Mikalová L, Pospíšilová P, Strouhal M, Chen L, Qin X, Muzny DM, Weinstock GM, et al.2012. Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLoS Negl Trop Dis. 6(9):e1832. PubMed PMC

Pinto M, Borges V, Antelo M, Pinheiro M, Nunes A, Azevedo J, Borrego MJ, Mendonça J, Carpinteiro D, Vieira L, et al.2016. Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat Microbiol. 2:16190. PubMed

Pond SLK, Frost SDW, Muse SV.. 2005. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21(5):676–679. PubMed

Pospíšilová P, Grange PA, Grillová L, Mikalová L, Martinet P, Janier M, Vermersch A, Benhaddou N, Del Giudice P, Alcaraz I, et al.2018. Multi-locus sequence typing of Treponema pallidum subsp. pallidum present in clinical samples from France: infecting treponemes are genetically diverse and belong to 18 allelic profiles. PLoS One 13(7):e0201068. PubMed PMC

Romeis E, Tantalo L, Lieberman N, Phung Q, Greninger A, Giacani L.. 2021. Genetic Engineering of Treponema pallidum subsp. pallidum, the Syphilis Spirochete. PLoS Pathog. 17(7):e1009612. PubMed PMC

Sánchez-Busó L, Comas I, Jorques G, González-Candelas F.. 2014. Recombination drives genome evolution in outbreak-related Legionella pneumophila isolates. Nat Genet. 46(11):1205–1211. PubMed

Schuenemann VJ, Kumar Lankapalli A, Barquera R, Nelson EA, Iraíz Hernández D, Acuña Alonzo V, Bos KI, Márquez Morfín L, Herbig A, Krause J.. 2018. Historic Treponema pallidum genomes from Colonial Mexico retrieved from archaeological remains. PLoS Negl Trop Dis. 12(6):e0006447. PubMed PMC

Shapiro BJ. 2016. How clonal are bacteria over time? Curr Opin Microbiol. 31:116–123. PubMed

Shapiro BJ, Jesse Shapiro B, Levade I, Kovacikova G, Taylor RK, Almagro-Moreno S.. 2017. Origins of pandemic Vibrio cholerae from environmental gene pools. Nat Microbiol. 2:16240. PubMed

Shimodaira H, Hasegawa M.. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 16(8):1114–1114.

Singh AE, Romanowski B.. 1999. Syphilis: review with emphasis on clinical, epidemiologic, and some biologic features. Clin Microbiol Rev. 12(2):187–209. PubMed PMC

Šmajs D, Norris SJ, Weinstock GM.. 2012. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol. 12(2):191–202. PubMed PMC

Staudová B, Strouhal M, Zobaníková M, Cejková D, Fulton LL, Chen L, Giacani L, Centurion-Lara A, Bruisten SM, Sodergren E, et al.2014. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: the genome is related to yaws treponemes but contains few loci similar to syphilis treponemes. PLoS Negl Trop Dis. 8(11):e3261. PubMed PMC

Strimmer K, Rambaut A.. 2002. Inferring confidence sets of possibly misspecified gene trees. Proc Biol Sci. 269(1487):137–142. PubMed PMC

Strimmer K, von Haeseler A.. 1997. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A. 94(13):6815–6819. PubMed PMC

Strouhal M, Mikalová L, Haviernik J, Knauf S, Bruisten S, Noordhoek GT, Oppelt J, Čejková D, Šmajs D.. 2018. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Indonesia: modular structure of several treponemal genes. PLoS Negl Trop Dis. 12(10):e0006867. PubMed PMC

Sun J, Meng Z, Wu K, Liu B, Zhang S, Liu Y, Wang Y, Zheng H, Huang J, Zhou P.. 2016. Tracing the origin of Treponema pallidum in China using next-generation sequencing. Oncotarget 7(28):42904–42918. PubMed PMC

Tong M-L, Zhao Q, Liu L-L, Zhu X-Z, Gao K, Zhang H-L, Lin L-R, Niu J-J, Ji Z-L, Yang T-C.. 2017. Whole genome sequence of the Treponema pallidum subsp. pallidum strain Amoy: an Asian isolate highly similar to SS14. PLoS One 12(8):e0182768. PubMed PMC

Valiente-Mullor C, Beamud B, Ansari I, Francés-Cuesta C, García-González N, Mejía L, Ruiz-Hueso P, González-Candelas F.. 2021. One is not enough: on the effects of reference genome for the mapping and subsequent analyses of short-reads. PLoS Comput Biol. 17(1):e1008678. PubMed PMC

Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K.. 2015. RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol. 32(3):820–832. PubMed PMC

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24(8):1586–1591. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...