A new typing scheme demonstrates high discriminatory power for Treponema pallidum subspecies
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Journal Article, Preprint
Grant support
U19 AI144133
NIAID NIH HHS - United States
PubMed
40672163
PubMed Central
PMC12265546
DOI
10.1101/2025.07.10.664125
PII: 2025.07.10.664125
Knihovny.cz E-resources
- Keywords
- MLST, T. pallidum, epidemiology, typing,
- Publication type
- Journal Article MeSH
- Preprint MeSH
The global resurgence of treponematoses, particularly syphilis, poses a growing public health challenge. Despite recent advances in sequencing technologies, obtaining complete Treponema pallidum genome sequences for epidemiological studies remains time-consuming and challenging due to the difficulty related to procuring clinical samples with sufficient treponemal burden to fulfil the sequencing requirements. There is an urgent need for rapid, cost-effective and accessible typing methods suitable for laboratories with Sanger sequencing resources. Based on the analysis of 121 T. pallidum genomes from geographically diverse regions, we selected seven highly variable genes to form the basis of this new typing system. These seven genes show high discrimination capacity, identifying many allelic profiles among T. pallidum isolates. Importantly, the scheme employs a single-step PCR protocol for the amplification and sequencing of all seven targets enabling straightforward implementation in standard laboratory settings. The MLST was validated using a diverse set of T. pallidum clinical samples from across the globe. A significant proportion of the tested samples showed macrolide resistance, emphasizing the need for epidemiological surveillance. Utilizing this new tool, we have analyzed the genetic variation within and between populations of T. pallidum, considering the geographical origin of the samples. Population structure analysis revealed distinct genetic clusters, underlining complex transmission dynamics of T. pallidum, shaped by local epidemiological factors. The MLST scheme is publicly accessible through the PubMLST database, encouraging widespread adoption in standard laboratories due to this database being user-friendly, intuitive, and fast to implement. The novel MLST scheme offers a promising tool to advance the study of the molecular epidemiology of T. pallidum, facilitate tracking transmission, and establish a global surveillance network with the overall goal of strengthening public health interventions for syphilis control.
Catholic University of Valencia San Vicente Mártir Valencia Spain
Centers for Disease Control and Prevention Atlanta GA USA
CEU Cardenal Herrera University of Castellón Castellón Spain
CIBER in Epidemiology and Public Health Madrid Spain
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Environmental Sciences University of Basel Basel Switzerland
Department of Neurology University of Washington School of Medicine Seattle WA USA
Dermatology Service Consorcio Hospital General Universitario Valencia Spain
Division of Microbiology Osaka Institute of Public Health Osaka Japan
Institute for Bioinformatics and Medical Informatics University of Tübingen Tübingen Germany
Institute of Evolutionary Medicine University of Zurich Zurich Switzerland
Microbiology Service Consorcio Hospital General Universitario Valencia Spain
School of Translational Medicine Monash University Melbourne Victoria Australia
University Hospital Zurich University of Zurich Zurich Switzerland
Zurich Institute of Forensic Medicine University of Zurich Zurich Switzerland
See more in PubMed
Noda AA, Grillová L, Lienhard R, Blanco O, Rodríguez I, Šmajs D. Bejel in Cuba: molecular identification of PubMed
Shinohara K, Furubayashi K, Kojima Y, Mori H, Komano J, Kawahata T. Clinical perspectives of PubMed
Grange PA, Allix-Beguec C, Chanal J, Benhaddou N, Gerhardt P, Morini J-P, et al. Molecular subtyping of PubMed
World Health Organization. Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021. 2021.
Health Organization W. Summary report of a consultation on the eradication of yaws, 5-7 March 2012, Morges, Switzerland. 2012. Available: https://apps.who.int/iris/bitstream/handle/10665/75528/WHO?sequence=1
Mitjà O, Godornes C, Houinei W, Kapa A, Paru R, Abel H, et al. Re-emergence of yaws after single mass azithromycin treatment followed by targeted treatment: a longitudinal study. Lancet. 2018;391: 1599–1607. PubMed PMC
Dofitas BL, Kalim SP, Toledo CB, Richardus JH. Yaws in the Philippines: first reported cases since the 1970s. Infect Dis Poverty. 2020;9: 1. PubMed PMC
Elo A, Dégboé B, Barogui Y, Gomido IC, Wadagni A, d’Almeida C, et al. Resurgence of yaws in Benin: Four confirmed cases in the district of Z, Southern Benin. Journal of public health and epidemiology. 2019;11: 201–208.
Timothy JWS, Beale MA, Rogers E, Zaizay Z, Halliday KE, Mulbah T, et al. Epidemiologic and Genomic Reidentification of Yaws, Liberia. Emerg Infect Dis. 2021;27: 1123–1132. PubMed PMC
Mitjà O, Šmajs D, Bassat Q. Advances in the diagnosis of endemic treponematoses: yaws, bejel, and pinta. PLoS Negl Trop Dis. 2013;7: e2283. PubMed PMC
Pillay A, Liu H, Chen CY, Holloway B, Sturm WA, Steiner B, et al. Molecular Subtyping of PubMed DOI
Grillová L, Bawa T, Mikalová L, Gayet-Ageron A, Nieselt K, Strouhal M, et al. Molecular characterization of PubMed PMC
Lieberman NAP, Lin MJ, Xie H, Shrestha L, Nguyen T, Huang M-L, et al. PubMed PMC
Vrbová E, Pospíšilová P, Dastychová E, Kojanová M, Kreidlová M, Rob F, et al. Majority of PubMed PMC
Marra CM, Sahi SK, Tantalo LC, Godornes C, Reid T, Behets F, et al. Enhanced molecular typing of treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J Infect Dis. 2010;202: 1380–1388. PubMed PMC
Godornes C, Giacani L, Barry AE, Mitja O, Lukehart SA. Development of a Multilocus Sequence Typing (MLST) scheme for PubMed PMC
Katz SS, Chi K-H, Nachamkin E, Danavall D, Taleo F, Kool JL, et al. Molecular strain typing of the yaws pathogen, PubMed PMC
Thurlow CM, Joseph SJ, Ganova-Raeva L, Katz SS, Pereira L, Chen C, et al. Selective Whole-Genome Amplification as a Tool to Enrich Specimens with Low PubMed PMC
Beale MA, Marks M, Cole MJ, Lee M-K, Pitt R, Ruis C, et al. Global phylogeny of PubMed PMC
Edmondson DG, Delay BD, Kowis LE, Norris SJ. Parameters affecting continuous in vitro culture of PubMed PMC
Pereira LE, Katz SS, Sun Y, Mills P, Taylor W, Atkins P, et al. Successful isolation of PubMed PMC
Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998;95: 3140–3145. PubMed PMC
Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of PubMed PMC
Dingle KE, Colles FM, Wareing DR, Ure R, Fox AJ, Bolton FE, et al. Multilocus sequence typing system for PubMed PMC
Enright MC, Spratt BG. A multilocus sequence typing scheme for PubMed
Katz KA, Pillay A, Ahrens K, Kohn RP, Hermanstyne K, Bernstein KT, et al. Molecular Epidemiology of Syphilis—San Francisco, 2004-2007. Sexually Transmitted Diseases. 2010. pp. 660–663. doi: 10.1097/olq.0b013e3181e1a77a PubMed DOI
Mikalová L, Pospíšilová P, Woznicová V, Kuklová I, Zákoucká H, Smajs D. Comparison of CDC and sequence-based molecular typing of syphilis treponemes: PubMed PMC
Grillova L, Jolley K, Šmajs D, Picardeau M. A public database for the new MLST scheme for PubMed PMC
Flasarová M, Smajs D, Matejková P, Woznicová V, Heroldová-Dvoráková M, Votava M. [Molecular detection and subtyping of PubMed
Woznicová V, Smajs D, Wechsler D, Matĕjková P, Flasarová M. Detection of PubMed PMC
Chuma IS, Roos C, Atickem A, Bohm T, Anthony Collins D, Grillová L, et al. Strain diversity of PubMed PMC
Medappa M, Pospíšilová P, Madruga MPM, John LN, Beiras CG, Grillová L, et al. Low genetic diversity of PubMed PMC
Peltzer A, Jäger G, Herbig A, Seitz A, Kniep C, Krause J, et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 2016;17: 60. PubMed PMC
Li C. A Burrows-Wheeler Transform Based Method for DNA Sequence Comparison. Computational Biology and Bioinformatics. 2014. p. 33. doi: 10.11648/j.cbb.20140203.11 DOI
Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32: 292–294. PubMed PMC
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20: 1297–1303. PubMed PMC
Arora N, Schuenemann VJ, Jäger G, Peltzer A, Seitz A, Herbig A, et al. Origin of modern syphilis and emergence of a pandemic PubMed
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol. 2020;37: 1530–1534. PubMed PMC
Strimmer K, von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A. 1997;94: 6815–6819. PubMed PMC
Lukehart SA, Godornes C, Molini BJ, Sonnett P, Hopkins S, Mulcahy F, et al. Macrolide resistance in Treponema pallidum in the United States and Ireland. N Engl J Med. 2004;351: 154–158. PubMed
Staden R, Judge DP, Bonfield JK. Managing Sequencing Projects in the GAP4 Environment. Introduction to Bioinformatics. pp. 327–344. doi: 10.1385/1-59259-335-6:327 DOI
Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30: 3276–3278. PubMed PMC
Matejkova P, Flasarova M, Zakoucka H, Borek M, Kremenova S, Arenberger P, et al. Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of PubMed
Molini BJ, Tantalo LC, Sahi SK, Rodriguez VI, Brandt SL, Fernandez MC, et al. Macrolide Resistance in PubMed PMC
Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol. 2009;537: 39–64. PubMed
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28: 3150–3152. PubMed PMC
Pla-Díaz M, Akgül G, Molak M, du Plessis L, Panagiotopoulou H, Doan K, et al. Insights into PubMed PMC
Nei M. F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet. 1977;41: 225–233. PubMed
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol Biol Evol. 2017;34: 3299–3302. PubMed
Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3: 124. PubMed PMC
Taouk ML, Taiaroa G, Pasricha S, Herman S, Chow EPF, Azzatto F, et al. Characterisation of PubMed DOI
Vrbová E, Noda AA, Grillová L, Rodríguez I, Forsyth A, Oppelt J, et al. Whole genome sequences of PubMed PMC
Seña AC, Matoga MM, Yang L, Lopez-Medina E, Aghakhanian F, Chen JS, et al. Clinical and genomic diversity of PubMed PMC
Beale MA, Thorn L, Cole MJ, Pitt R, Charles H, Ewens M, et al. Genomic epidemiology of syphilis in England: a population-based study. Lancet Microbe. 2023;4: e770–e780. PubMed PMC
Pla-Díaz M, Sánchez-Busó L, Giacani L, Šmajs D, Bosshard PP, Bagheri HC, et al. Evolutionary Processes in the Emergence and Recent Spread of the Syphilis Agent, PubMed DOI PMC
Grillová L, Oppelt J, Mikalová L, Nováková M, Giacani L, Niesnerová A, et al. Directly Sequenced Genomes of Contemporary Strains of Syphilis Reveal Recombination-Driven Diversity in Genes Encoding Predicted Surface-Exposed Antigens. Front Microbiol. 2019;10: 1691. PubMed PMC
Strouhal M, Mikalová L, Haviernik J, Knauf S, Bruisten S, Noordhoek GT, et al. Complete genome sequences of two strains of PubMed PMC
Beale MA, Marks M, Sahi SK, Tantalo LC, Nori AV, French P, et al. Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages. Nat Commun. 2019;10: 1–9. PubMed PMC
Obraztsova O, Shpilevaya MV, Katunin G, Obukhov A, Shagabieva YZ, Solomka V. Prevalence of the A2058G mutation in 23S rRNA gene, which determines DOI
Morando N, Vrbová E, Melgar A, Rabinovich RD, Šmajs D, Pando MA. High frequency of Nichols-like strains and increased levels of macrolide resistance in PubMed DOI PMC
Wang X, Abliz P, Deng S. Molecular Characteristics of Macrolide Resistance in from Patients with Latent Syphilis in Xinjiang, China. Infect Drug Resist. 2023;16: 1231–1236. PubMed PMC
Lieberman NAP, Reid TB, Cannon CA, Nunley BE, Berzkalns A, Cohen SE, et al. Near-Universal Resistance to Macrolides of PubMed PMC
Janier M, Hegyi V, Dupin N, Unemo M, Tiplica GS, Potočnik M, et al. 2014 European guideline on the management of syphilis. J Eur Acad Dermatol Venereol. 2014;28: 1581–1593. PubMed