Clinical and genomic diversity of Treponema pallidum subspecies pallidum to inform vaccine research: an international, molecular epidemiology study
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie
Grantová podpora
T32 AI007151
NIAID NIH HHS - United States
P41 GM103311
NIGMS NIH HHS - United States
D43 TW006589
FIC NIH HHS - United States
U19 AI144177
NIAID NIH HHS - United States
Wellcome Trust - United Kingdom
PubMed
39181152
PubMed Central
PMC11371664
DOI
10.1016/s2666-5247(24)00087-9
PII: S2666-5247(24)00087-9
Knihovny.cz E-zdroje
- MeSH
- bakteriální vakcíny imunologie aplikace a dávkování MeSH
- dospělí MeSH
- fylogeneze MeSH
- genetická variace genetika MeSH
- genom bakteriální MeSH
- genomika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- molekulární epidemiologie * MeSH
- průřezové studie MeSH
- sekvenování celého genomu * MeSH
- syfilis * epidemiologie mikrobiologie MeSH
- Treponema pallidum * genetika imunologie MeSH
- Treponema MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- Geografické názvy
- Spojené státy americké epidemiologie MeSH
- Názvy látek
- bakteriální vakcíny MeSH
BACKGROUND: The increase in syphilis rates worldwide necessitates development of a vaccine with global efficacy. We aimed to explore Treponema pallidum subspecies pallidum (TPA) molecular epidemiology essential for vaccine research by analysing clinical data and specimens from early syphilis patients using whole-genome sequencing (WGS) and publicly available WGS data. METHODS: In this multicentre, cross-sectional, molecular epidemiology study, we enrolled patients with primary, secondary, or early latent syphilis from clinics in China, Colombia, Malawi, and the USA between Nov 28, 2019, and May 27, 2022. Participants aged 18 years or older with laboratory confirmation of syphilis by direct detection methods or serological testing, or both, were included. Patients were excluded from enrolment if they were unwilling or unable to give informed consent, did not understand the study purpose or nature of their participation, or received antibiotics active against syphilis in the past 30 days. TPA detection and WGS were conducted on lesion swabs, skin biopsies, skin scrapings, whole blood, or rabbit-passaged isolates. We compared our WGS data to publicly available genomes and analysed TPA populations to identify mutations associated with lineage and geography. FINDINGS: We screened 2802 patients and enrolled 233 participants, of whom 77 (33%) had primary syphilis, 154 (66%) had secondary syphilis, and two (1%) had early latent syphilis. The median age of participants was 28 years (IQR 22-35); 154 (66%) participants were cisgender men, 77 (33%) were cisgender women, and two (1%) were transgender women. Of the cisgender men, 66 (43%) identified as gay, bisexual, or other sexuality. Among all participants, 56 (24%) had HIV co-infection. WGS data from 113 participants showed a predominance of SS14-lineage strains with geographical clustering. Phylogenomic analyses confirmed that Nichols-lineage strains were more genetically diverse than SS14-lineage strains and clustered into more distinct subclades. Differences in single nucleotide variants (SNVs) were evident by TPA lineage and geography. Mapping of highly differentiated SNVs to three-dimensional protein models showed population-specific substitutions, some in outer membrane proteins (OMPs) of interest. INTERPRETATION: Our study substantiates the global diversity of TPA strains. Additional analyses to explore TPA OMP variability within strains is vital for vaccine development and understanding syphilis pathogenesis on a population level. FUNDING: US National Institutes of Health National Institute for Allergy and Infectious Disease, the Bill & Melinda Gates Foundation, Connecticut Children's, and the Czech Republic National Institute of Virology and Bacteriology.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Ghanem KG, Ram S, Rice PA. The modern epidemic of syphilis. N Engl J Med. 2020;382:845–854. PubMed
WHO Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021. Accountability for the global health sector strategies 2016–2021: actions for impact. 2021. https://www.who.int/publications/i/item/9789240027077
Gottlieb SL, Deal CD, Giersing B, et al. The global roadmap for advancing development of vaccines against sexually transmitted infections: update and next steps. Vaccine. 2016;34:2939–2947. PubMed PMC
Edmondson DG, Norris SJ. In vitro cultivation of the syphilis spirochete Treponema pallidum. Curr Protoc. 2021;1:e44. PubMed PMC
Arora N, Schuenemann VJ, Jäger G, et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol. 2016;2 PubMed
Beale MA, Marks M, Cole MJ, et al. Global phylogeny of Treponema pallidum lineages reveals recent expansion and spread of contemporary syphilis. Nat Microbiol. 2021;6:1549–1560. PubMed PMC
Taouk ML, Taiaroa G, Pasricha S, et al. Characterisation of Treponema pallidum lineages within the contemporary syphilis outbreak in Australia: a genomic epidemiological analysis. Lancet Microbe. 2022;3:e417–e426. PubMed
Lieberman NAP, Lin MJ, Xie H, et al. Treponema pallidum genome sequencing from six continents reveals variability in vaccine candidate genes and dominance of Nichols clade strains in Madagascar. PLoS Negl Trop Dis. 2021;15 PubMed PMC
Hawley KL, Montezuma-Rusca JM, Delgado KN, et al. Structural modeling of the Treponema pallidum outer membrane protein repertoire: a roadmap for deconvolution of syphilis pathogenesis and development of a syphilis vaccine. J Bacteriol. 2021;203 PubMed PMC
Lukehart SA, Marra CM. Isolation and laboratory maintenance of Treponema pallidum. Curr Protoc Microbiol. 2007;7:12A.1.1–12A.1.18. PubMed
Marfin AA, Liu H, Sutton MY, Steiner B, Pillay A, Markowitz LE. Amplification of the DNA polymerase I gene of Treponema pallidum from whole blood of persons with syphilis. Diagn Microbiol Infect Dis. 2001;40:163–166. PubMed
Chen W, Šmajs D, Hu Y, et al. Analysis of Treponema pallidum strains from China using improved methods for whole-genome sequencing from primary syphilis chancres. J Infect Dis. 2021;223:848–853. PubMed PMC
Delgado KN, Montezuma-Rusca JM, Orbe IC, et al. Extracellular loops of the Treponema pallidum FadL orthologs TP0856 and TP0858 elicit IgG antibodies and IgG+-specific B-cells in the rabbit model of experimental syphilis. MBio. 2022;13 PubMed PMC
Beale MA, Marks M, Sahi SK, et al. Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages. Nat Commun. 2019;10:3255. PubMed PMC
Cruz AR, Ramirez LG, Zuluaga AV, et al. Immune evasion and recognition of the syphilis spirochete in blood and skin of secondary syphilis patients: two immunologically distinct compartments. PLoS Negl Trop Dis. 2012;6 PubMed PMC
Grange PA, Gressier L, Dion PL, et al. Evaluation of a PCR test for detection of Treponema pallidum in swabs and blood. J Clin Microbiol. 2012;50:546–552. PubMed PMC
Towns JM, Leslie DE, Denham I, et al. Treponema pallidum detection in lesion and non-lesion sites in men who have sex with men with early syphilis: a prospective, cross-sectional study. Lancet Infect Dis. 2021;21:1324–1331. PubMed
Theel ES, Katz SS, Pillay A. Molecular and direct detection tests for Treponema pallidum subspecies pallidum: a review of the literature, 1964–2017. Clin Infect Dis. 2020;71(suppl 1):S4–S12. PubMed PMC
Lukehart SA, Godornes C, Molini BJ, et al. Macrolide resistance in Treponema pallidum in the United States and Ireland. N Engl J Med. 2004;351:154–158. PubMed
Chen XS, Yin YP, Wei WH, et al. High prevalence of azithromycin resistance to Treponema pallidum in geographically different areas in China. Clin Microbiol Infect. 2013;19:975–979. PubMed
Šmajs D, Paštěková L, Grillová L. Macrolide resistance in the syphilis spirochete, Treponema pallidum ssp. pallidum: can we also expect macrolide-resistant yaws strains? Am J Trop Med Hyg. 2015;93:678–683. PubMed PMC
Venter JME, Müller EE, Mahlangu MP, Kularatne RS. Treponema pallidum macrolide resistance and molecular epidemiology in Southern Africa, 2008 to 2018. J Clin Microbiol. 2021;59 PubMed PMC
Machalek DA, Tao Y, Shilling H, et al. Prevalence of mutations associated with resistance to macrolides and fluoroquinolones in Mycoplasma genitalium: a systematic review and meta-analysis. Lancet Infect Dis. 2020;20:1302–1314. PubMed
Saraithong P, Goetting-Minesky MP, Durbin PM, Olson SW, Gherardini FC, Fenno JC. Roles of TroA and TroR in metalloregulated growth and gene expression in Treponema denticola. J Bacteriol. 2020;202 PubMed PMC
Posey JE, Hardham JM, Norris SJ, Gherardini FC. Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum. Proc Natl Acad Sci USA. 1999;96:10887–10892. PubMed PMC
Desrosiers DC, Sun YC, Zaidi AA, Eggers CH, Cox DL, Radolf JD. The general transition metal (Tro) and Zn2+ (Znu) transporters in Treponema pallidum: analysis of metal specificities and expression profiles. Mol Microbiol. 2007;65:137–152. PubMed
Radolf JD, Deka RK, Anand A, Šmajs D, Norgard MV, Yang XF. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol. 2016;14:744–759. PubMed PMC
Grillová L, Bawa T, Mikalová L, et al. Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme. PLoS One. 2018;13 PubMed PMC
Pla-Díaz M, Sánchez-Busó L, Giacani L, et al. Evolutionary processes in the emergence and recent spread of the syphilis agent. Treponema pallidum. Mol Biol Evol. 2022;39 PubMed PMC
Lieberman NAP, Armstrong TD, Chung B, et al. High-throughput nanopore sequencing of Treponema pallidum tandem repeat genes arp and tp0470 reveals clade-specific patterns and recapitulates global whole genome phylogeny. Front Microbiol. 2022;13 PubMed PMC