• This record comes from PubMed

Development of Deletion Lines for Chromosome 3D of Bread Wheat

. 2019 ; 10 () : 1756. [epub] 20200128

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The identification of genes of agronomic interest in bread wheat (Triticum aestivum L.) is hampered by its allopolyploid nature (2n = 6x = 42; AABBDD) and its very large genome, which is largely covered by transposable elements. However, owing to this complex structure, aneuploid stocks can be developed in which fragments or entire chromosomes are missing, sometimes resulting in visible phenotypes that help in the cloning of affected genes. In this study, the 2C gametocidal chromosome from Aegilops cylindrica was used to develop a set of 113 deletion lines for chromosome 3D in the reference cultivar Chinese Spring. Eighty-four markers were used to show that the deletions evenly covered chromosome 3D and ranged from 6.5 to 357 Mb. Cytogenetic analyses confirmed that the physical size of the deletions correlated well with the known molecular size deduced from the reference sequence. This new genetic stock will be useful for positional cloning of genes on chromosome 3D, especially for Ph2 affecting homoeologous pairing in bread wheat.

See more in PubMed

Danilova T. V., Friebe B., Gill B. S. (2012). Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 121, 597–611. 10.1007/s00412-012-0384-7 PubMed DOI

Driscoll C. J. (1972). Genetic suppression of homoeologous chromosome pairing in hexaploid wheat. Can. J. Genet. Cytol. 14, 1. 10.1139/g72-004 PubMed DOI

Endo T. R., Gill B. S. (1996). The deletion stocks of common wheat. J. Hered. 87, 295–307. 10.1093/oxfordjournals.jhered.a023003 DOI

Endo T. R., Tsunewaki K. (1975). Sterility of common wheat with Aegilops triuncialis cytoplasm. J. Hered. 66, 13–16. 10.1093/oxfordjournals.jhered.a108562 DOI

Endo T. R. (1988). Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. @ in common wheat. J. Hered. 79, 366–370. 10.1093/oxfordjournals.jhered.a110529 PubMed DOI

Endo T. R. (1990). GC chromosomes and their induction of chromosome mutations in wheat. Jpn. J. Genet. 65, 135–152. 10.1266/jjg.65.135 DOI

Endo T. R. (2007). The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Res. 15, 67–75. 10.1007/s10577-006-1100-3 PubMed DOI

Finch R. A., Miller T. E., Bennett M. D. (1984). “Cuckoo” Aegilops addition chromosome in wheat ensures its transmission by causing chromosome breaks in meiospores lacking it. Chromosoma 90, 84–88. 10.1007/BF00352282 DOI

Huang S., Sirikhachornkit A., Su X. J., Faris J., Gill B., Haselkorn R., et al. (2002). Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. U. S. A. 99, 8133–8138. 10.1073/pnas.072223799 PubMed DOI PMC

IWGSC (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191, 661. 10.1126/science.aar7191 PubMed DOI

Kubaláková M., Valárik M., Bartoš J., Vrána J., Číhalíková J., Molnár-Láng M., et al. (2003). Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46, 893–905. 10.1139/g03-054 PubMed DOI

Maan S. S. (1975). Exclusive preferential transmission of an alien chromosome in common wheat. Crop Sci. 15, 287–292. 10.2135/cropsci1975.0011183X001500030002x DOI

Mello-Sampayo T., Canas A. P. (1973). “Suppression of meiotic chromosome pairing in common wheat,” in Proceedings of the 4th international wheat genetics symposium. Eds. Sears E. R., Sears L. M. S. (Columbia, MO, USA: Agric. Exp. Stn.), 703–713s.

Mello-Sampayo T. (1971). Genetic regulation of meiotic chromosome pairing by chromosome-3D of Triticum aestivum. Nat. New. Biol. 230, 22. 10.1038/newbio230022a0 PubMed DOI

Morrison J. W., Unrau J. (1952). Frequency of micronuclei in pollen quartets of common wheat monosomics. Can. J. Bot. 30, 371. 10.1139/b52-029 DOI

Olmo H. P. (1935). Genetical Studies of Monosomic Types of Nicotiana tabacum. Genet 20, 286–300. PubMed PMC

Pedersen C., Langridge P. (1997). Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40, 589–593. 10.1139/g97-077 PubMed DOI

Riley R., Chapman V. (1958). Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182, 713–715. 10.1038/182713a0 DOI

Sears E. R., Okamoto M. (1958). “Intergenomic chromosome relationships in hexaploid wheat,” in Proceedings of the Xth International Congress of Genetics. Ed. Boyes J. W. (Toronto, Canada: University of Toronto Press; ), 258–259. 10.1007/bf00325789 DOI

Sears E. R. (1950). Misdivision of univalents in common wheat. Chromosoma 4, 535–550. 10.1007/bf00325789 PubMed DOI

Sears E. R. (1982). A wheat mutation conditioning an intermediate level of homoeologous chromosome pairing. Can. J. Genet. Cytol. 24, 715–719. 10.1139/g82-076 DOI

Sourdille P., Singh S., Cadalen T., Brown-Guedira G. L., Gay G., Qi L., et al. (2004). Microsatellite-based deletion bin system for the establishment of genetic–physical map relationships in wheat (Triticum aestivum L.). Funct. Integr. Genomics 4, 12–25. 10.1007/s10142-004-0106-1 PubMed DOI

Sutton T., Whitford R., Baumann U., Dong C. M., Able J. A., Langridge P. (2003). The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Plant J. 36, 443–456. 10.1046/j.1365-313X.2003.01891.x PubMed DOI

Tsujimoto H. (1993). Molecular cytological evidence for gradual telomere synthesis at the broken chromosome ends in wheat. J. Plant Res. 106, 239–244. 10.1007/BF02344591 DOI

Tsunewaki K., Heyne E. G. (1960). The transmission of the monosomic condition in wheat: var. Chin. Spring. J. Hered. 51, 63–68. 10.1093/oxfordjournals.jhered.a106953 DOI

Vrána J., Šimková H., Kubaláková M., Číhalíková J., Doležel J. (2012). Flow cytometric chromosome sorting in plants: The next generation. Methods 57, 331–337. 10.1016/j.ymeth.2012.03.006 PubMed DOI

Find record

Citation metrics

Loading data ...

    Archiving options