Gametocidal genes: from a discovery to the application in wheat breeding
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38711610
PubMed Central
PMC11070591
DOI
10.3389/fpls.2024.1396553
Knihovny.cz E-zdroje
- Klíčová slova
- Aegilops, Gc factors/elements/genes, Triticum, gametocidal, pollen-killer, segregation distorter, wheat,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Some species of the genus Aegilops, a wild relative of wheat, carry chromosomes that after introducing to wheat exhibit preferential transmission to progeny. Their selective retention is a result of the abortion of gametes lacking them due to induced chromosomal aberrations. These chromosomes are termed Gametocidal (Gc) and, based on their effects, they are categorized into three types: mild, intense or severe, and very strong. Gc elements within the same homoeologous chromosome groups of Aegilops (II, III, or IV) demonstrate similar Gc action. This review explores the intriguing dynamics of Gc chromosomes and encompasses comprehensive insights into their source species, behavioral aspects, mode of action, interactions, suppressions, and practical applications of the Gc system in wheat breeding. By delving into these areas, this work aims to contribute to the development of novel plant genetic resources for wheat breeding. The insights provided herein shed light on the utilization of Gc chromosomes to produce chromosomal rearrangements in wheat and its wild relatives, thereby facilitating the generation of chromosome deletions, translocations, and telosomic lines. The Gc approach has significantly advanced various aspects of wheat genetics, including the introgression of novel genes and alleles, molecular markers and gene mapping, and the exploration of homoeologous relationships within Triticeae species. The mystery lies in why gametes possessing Gc genes maintain their normality while those lacking Gc genes suffer abnormalities, highlighting an unresolved research gap necessitating deeper investigation.
Zobrazit více v PubMed
Aldrich J. C., Leibholz A., Cheema M. S., Ausiό J., Ferree P. M. (2017). A “selfish” B chromosome induces genome elimination by disrupting the histone code in the jewel wasp Nasonia vitripennis. Sci. Rep. 7, 42551. doi: 10.1038/srep42551 PubMed DOI PMC
Ashida T., Nasuda S., Sato K., Endo T. R. (2007). Dissection of barley chromosome 5H in common wheat. Genes Genet. Syst. 82, 123–133. doi: 10.1266/ggs.82.123 PubMed DOI
Badaeva E. D., Amosova A. V., Samatadze T. E., Zoshchuk S. A., Shostak N. G., Chikida N. N., et al. . (2004). Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst. Evol. 246, 45–76. doi: 10.1007/s00606-003-0072-4 DOI
Badaeva E. D., Friebe B., Gill B. S. (1996). Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39, 293–306. doi: 10.1139/g96-040 PubMed DOI
Blavet N., Yang H., Su H., Solanský P., Douglas R. N., Karafiátová M., et al. . (2021). Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. PNAS 118, 1–11. doi: 10.1073/pnas.2104254118 PubMed DOI PMC
Boehm J., Cai X. (2024). Enrichment and diversification of the wheat genome via alien introgression. Plants 13, 339. doi: 10.3390/plants13030339 PubMed DOI PMC
Cameron D. R., Moav R. M. (1957). Inheritance in Nicotiana tabacum XXVII. Pollen killer, an alien genetic locus inducing abortion of microspores not carrying it. Genetics 42, 326–335. doi: 10.1093/genetics/42.3.326 PubMed DOI PMC
Chen P., Liu W., Yuan J., Wang X., Zhou B., Wang S., et al. . (2005). Development and characterization of wheat- Leymus racemosus translocation lines with resistance to Fusarium Head Blight. Theor. Appl. Genet. 111, 941–948. doi: 10.1007/s00122-005-0026-z PubMed DOI
Chen Q., Cao A., Qi Z., Zhang W., Chen P. (2008). Structural Changes of 2V Chromosome of Haynaldia villosa Induced by Gametocidal Chromosome 3C of Aegilops triuncialis . Agric. Sci. China 7, 804–811. doi: 10.1016/S1671-2927(08)60117-0 PubMed DOI
Cherif-Mouaki S., Said M., Alvarez J. B., Cabrera A. (2011). Sub-arm location of prolamin and EST-SSR loci on chromosome 1H(ch) from Hordeum Chilense . Euphytica 178, 63–69. doi: 10.1007/s10681-010-0268-y DOI
Copete-Parada A., Palomino C., Cabrera A. (2021). Development and characterization of wheat-Agropyron cristatum introgression lines induced by gametocidal genes and wheat ph1b mutant. Agronomy 11, 277. doi: 10.3390/agronomy11020277 DOI
Crow J. F. (1983). Hybrid dysgenesis and the P factor in Drosophila. Japanese J. Genet. 58, 621–625. doi: 10.1266/jjg.58.621 DOI
de Las Heras J. I., King I. P., Parker J. S. (2001). 5-azacytidine induces chromosomal breakage in the root tips of wheat carrying the cuckoo chromosome 4SL from Aegilops sharonensis . Heredity 87, 474–479. doi: 10.1046/j.1365-2540.2001.00931.x PubMed DOI
Durante M., Formenti S. C. (2018). Radiation-induced chromosomal aberrations and immunotherapy: micronuclei, cytosolic DNA, and interferon-production pathway. Front. Oncol. 8. doi: 10.3389/fonc.2018.00192 PubMed DOI PMC
Endo T. R. (1979). Selective gametocidal action of a chromosome of Aegilops cylindrica in a cultivar of common wheat. Wheat Inf. service 50, 24–28.
Endo T. R. (1982). Gametocidal chromosomes of three Aegilops species in common wheat. Can. J. Genet. Cytol. 24, 201–206. doi: 10.1139/g82-020 DOI
Endo T. R. (1985). Two types of gametocidal chromosome of Aegilops sharonensis and Ae. longissima . Japanese J. Genet. 60, 125–135. doi: 10.1266/jjg.60.125 DOI
Endo T. R. (1988. a). “Chromosome mutations induced by gametocidal chromosomes in common wheat,” in Proceedings of the seventh international wheat genetics symposium, Cambridge, UK, 13-19 July 1988, CABI Digital Library. 259–265.
Endo T. R. (1988. b). Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. @ in common wheat. J. Hered 79, 366–370. doi: 10.1093/oxfordjournals.jhered.a110529 PubMed DOI
Endo T. R. (1990). Gametocidal chromosomes and their induction of chromosome mutations in wheat. Japanese J. Genet. 65, 135–152. doi: 10.1266/jjg.65.135 DOI
Endo T. R. (2007). The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Res. 15, 67–75. doi: 10.1007/s10577-006-1100-3 PubMed DOI
Endo T. R. (2015). “Gametocidal Genes,” in Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics. Eds. Molnár-Láng M., Ceoloni C., Doležel J. (Springer International Publishing, Cham: ), 121–131. doi: 10.1007/978-3-319-23494-6_5 DOI
Endo T. R., Gill B. S. (1996). The deletion stocks of common wheat. J. Heredity 87, 295–307. doi: 10.1093/oxfordjournals.jhered.a023003 DOI
Endo T. R., Katayama Y. (1978). Finding of a selectively retained chromosome of Aegilops caudata L. in common wheat. Wheat Inf. Serv. 47/48, 32–35.
Endo T. R., Tsunewaki K. (1975). Sterility of common wheat with Aegilops triuncialis cytoplasm. J. Heredity 66, 13–18. doi: 10.1093/oxfordjournals.jhered.a108562 DOI
Farkas A., Gaál E., Ivanizs L., Blavet N., Said M., Holušová K., et al. . (2023). Chromosome genomics facilitates the marker development and selection of wheat-Aegilops biuncialis addition, substitution and translocation lines. Sci. Rep. 13, 20499. doi: 10.1038/s41598-023-47845-8 PubMed DOI PMC
Feldman M. (1979). “New evidence on the origin of the B genome of wheat,” in Proceedings of the Fifth International Wheat Genetics Symposium, New Delhi, India: Indian Society of Genetics & Plant Breeding, February 23-28, 1978. 120–132.
Finch R. A., Miller T. E., Bennett M. D. (1984). “Cuckoo” Aegilops addition chromosome in wheat ensures its transmission by causing chromosome breaks in meiospores lacking it. Chromosoma 90, 84–88. doi: 10.1007/BF00352282 DOI
Friebe B., Kynast R. G., Gill B. S. (2000). Gametocidal factor-induced structural rearrangements in rye chromosomes added to common wheat. Chromosome Res. 8, 501–511. doi: 10.1023/A:1009219722418 PubMed DOI
Friebe B., Schubert V., Blüthner W. D., Hammer K. (1992). C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum — Ae. caudata and six derived chromosome addition lines. Theoret. Appl. Genet. 83, 589–596. doi: 10.1007/BF00226902 PubMed DOI
Friebe B. R., Tuleen N. A., Gill B. S. (1999). Development and identification of a complete set of Triticum aestivum - Aegilops geniculata chromosome addition lines. Genome 42, 374–380. doi: 10.1139/g99-011 DOI
Friebe B., Zhang P., Gill B. S., Nasuda S. (2003). Characterization of a knock-out mutation at the Gc2 locus in wheat. Chromosoma 111, 509–517. doi: 10.1007/s00412-003-0234-8 PubMed DOI
Gill K. S., Gill B. S., Endo T. R., Boyko E. V. (1996). Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143, 1001–1012. doi: 10.1093/genetics/143.2.1001 PubMed DOI PMC
Guo W., Comai L., Henry I. M. (2021). Chromoanagenesis from radiation-induced genome damage in Populus . PloS Genet. 17, e1009735. doi: 10.1371/journal.pgen.1009735 PubMed DOI PMC
Haapaniemi E., Botla S., Persson J., Schmierer B., Taipale J. (2018). CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930. doi: 10.1038/s41591-018-0049-z PubMed DOI
Hajjar R., Hodgkin T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156, 1–13. doi: 10.1007/s10681-007-9363-0 DOI
Han H., Bai L., Su J., Zhang J., Song L., Gao A., et al. . (2014). Genetic rearrangements of six wheat–Agropyron cristatum 6P addition lines revealed by molecular markers. PloS One 9, e91066. doi: 10.1371/journal.pone.0091066 PubMed DOI PMC
Houben A. (2017). B chromosomes – A matter of chromosome drive. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.00210 PubMed DOI PMC
Ishihara A., Mizuno N., Islam R. A. K. M., Doležel J., Endo T. R., Nasuda S. (2014). Dissection of barley chromosomes 1H and 6H by the gametocidal system. Genes Genet. Syst. 89, 203–214. doi: 10.1266/ggs.89.203 PubMed DOI
Jones R. N. (1995). B chromosomes in plants. NewPhytol 131, 411–434. doi: 10.1111/j.1469-8137.1995.tb03079.x PubMed DOI
Jones N., Houben A. (2003). B chromosomes in plants: escapees from the A chromosome genome? Trends Plant Sci. 8, 417–423. doi: 10.1016/S1360-1385(03)00187-0 PubMed DOI
Jones R. N., Viegas W., Houben A. (2008). A century of B chromosomes in plants: so what? Ann. Bot. 101, 767–775. doi: 10.1093/aob/mcm167 PubMed DOI PMC
Karafiátová M., Bednářová M., Said M., Čížková J., Holušová K., Blavet N., et al. . (2021). The B chromosome of Sorghum purpureosericeum reveals the first pieces of its sequence. J. Exp. Bot. 72, 1606–1616. doi: 10.1093/jxb/eraa548 PubMed DOI PMC
Kibirige-Sebunya I., Knott D. R. (1983). Transfer of stem rust resistance to wheat from an Agropyron chromosome having a gametocidal effect. Can. J. Genet. Cytol. 25, 215–221. doi: 10.1139/g83-035 DOI
Kidwell M. G. (1983). Evolution of hybrid dysgenesis determinants in Drosophila melanogaster . Proc. Natl. Acad. Sci. 80, 1655–1659. doi: 10.1073/pnas.80.6.1655 PubMed DOI PMC
Kihara H. (1959). Fertility and morphological variation in the substitution backcrosses of the hybrid Triticum vulgare × Aegilops caudata . Proc. 10th Int. Congr. Genet. 1, 142–171.
Kim S. H., Kim S. W., Ryu J., Kang S.-Y., Kang B.-C., Kim J.-B. (2020). Dark/light treatments followed by γ-irradiation increase the frequency of leaf-color mutants in cymbidium. Plants 9, 532. doi: 10.3390/plants9040532 PubMed DOI PMC
Kim Y. J., Lee J. W., Cho Y. H., Choi Y. J., Lee Y., Chung H. W. (2022). Chromosome damage in relation to recent radiation exposure and radiation quality in nuclear power plant workers. Toxics 10, 94. doi: 10.3390/toxics10020094 PubMed DOI PMC
King J., Grewal S., Yang C.-Y., Hubbart S., Scholefield D., Ashling S., et al. . (2017). A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum . Plant Biotechnol. J. 15, 217–226. doi: 10.1111/pbi.12606 PubMed DOI PMC
King J., Grewal S., Yang C., Hubbart Edwards S., Scholefield D., Ashling S., et al. . (2018). Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. Ann. Bot. 121, 229–240. doi: 10.1093/aob/mcx149 PubMed DOI PMC
King I. P., Koebner R. M. D., Schlegel R., Reader S. M., Miller T. E., Law C. N. (1991. a). Exploitation of a preferentially transmitted chromosome from Aegilops sharonensis for the elimination of segregation for height in semidwarf bread wheat varieties. Genome 34, 944–949. doi: 10.1139/g91-146 DOI
King I. P., Laurie D. A. (1993). Chromosome damage in early embryo and endosperm development in crosses involving the preferentially transmitted 4S1 chromosome of Aegilops sharonensis . Heredity 70, 52–59. doi: 10.1038/hdy.1993.7 DOI
King I. P., Miller T. E., Koebner R. M. D. (1991. b). Determination of the transmission frequency of chromosome 4S (l) of Aegilops sharonensis in a range of wheat genetic backgrounds. Theoret. Appl. Genet. 81, 519–523. doi: 10.1007/BF00219443 PubMed DOI
Kishii M. (2019). An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00585 PubMed DOI PMC
Knight E., Binnie A., Draeger T., Moscou M., Rey M.-D., Sucher J., et al. . (2015). Mapping the ‘breaker’ element of the gametocidal locus proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4Ssh of Aegilops sharonensis . Theor. Appl. Genet. 128, 1049–1059. doi: 10.1007/s00122-015-2489-x PubMed DOI PMC
Kosicki M., Tomberg K., Bradley A. (2018). Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771. doi: 10.1038/nbt.4192 PubMed DOI PMC
Kota R. S., Dvorak J. (1988). Genomic instability in wheat induced by chromosome 6b(s) of Triticum speltoides . Genetics 120, 1085–1094. doi: 10.1093/genetics/120.4.1085 PubMed DOI PMC
Kwiatek M., Majka M., Ślusarkiewicz-Jarzina A., Ponitka A., Pudelska H., Belter J., et al. . (2016). Transmission of the Aegilops ovata chromosomes carrying gametocidal factors in hexaploid triticale (×Triticosecale Wittm.) hybrids. J. Appl. Genet. 57, 305–315. doi: 10.1007/s13353-015-0332-3 PubMed DOI PMC
Kwiatek M. T., Wiśniewska H., Ślusarkiewicz-Jarzina A., Majka J., Majka M., Belter J., et al. . (2017). Gametocidal factor transferred from Aegilops geniculata Roth can be adapted for large-scale chromosome manipulations in cereals. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.00409 PubMed DOI PMC
Kynast R. G., Friebe B., Gill B. S. (2000). Fate of multicentric and ring chromosomes induced by a new gametocidal factor located on chromosome 4Mg of Aegilops geniculata . Chromosome Res. 8, 133–139. doi: 10.1023/A:1009294519798 PubMed DOI
Lapitan N. L. V., Sears R. G., Gill B. S. (1984). Translocations and other karyotypic structural changes in wheat x rye hybrids regenerated from tissue culture. Theoret. Appl. Genet. 68, 547–554. doi: 10.1007/BF00285012 PubMed DOI
Li H.-J., Guo B.-H., Li Y.-W., Du L.-Q., Jia X., Chu C.-C. (2000). Molecular cytogenetic analysis of intergeneric chromosomal translocations between wheat (Triticum aestivum L.) and Dasypyrum villosum arising from tissue culture. Genome 43, 756–762. doi: 10.1139/g00-020 PubMed DOI
Liu C., Guo W., Wang Y., Fu B., Doležel J., Liu Y., et al. . (2023). Introgression of sharp eyespot resistance from Dasypyrum villosum chromosome 2VL into bread wheat. Crop J. 11, 1512–1520. doi: 10.1016/j.cj.2023.04.013 DOI
Liu W.-H., Luan Y., Wang J.-C., Wang X.-G., Su J.-J., Zhang J.-P., et al. . (2010). Production and identification of wheat – Agropyron cristatum (1·4P) alien translocation lines. Genome 53, 472–481. doi: 10.1139/G10-023 PubMed DOI
Loegering W. Q., Sears E. R. (1963). Distorted inheritance of stem-rust resistance of timstein wheat caused by a pollen-killing gene. Can. J. Genet. Cytol. 5, 65–72. doi: 10.1139/g63-010 DOI
Luan Y., Wang X., Liu W., Li C., Zhang J., Gao A., et al. . (2010). Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta 232, 501–510. doi: 10.1007/s00425-010-1187-9 PubMed DOI
Lyttle T. W. (1993). Cheaters sometimes prosper: distortion of mendelian segregation by meiotic drive. Trends Genet. 9, 205–210. doi: 10.1016/0168-9525(93)90120-7 PubMed DOI
Ma W., Gabriel T. S., Martis M. M., Gursinsky T., Schubert V., Vrána J., et al. . (2017). Rye B chromosomes encode a functional Argonaute-like protein with in vitro slicer activities similar to its A chromosome paralog. New Phytol. 213, 916–928. doi: 10.1111/nph.14110 PubMed DOI
Maan S. S. (1975). Exclusive preferential transmission of an alien chromosome in common wheat. Crop Sci. 15, cropsci1975.0011183X001500030002x. doi: 10.2135/cropsci1975.0011183X001500030002x DOI
Manabe M., Ino T., Kasaya M., Takumi S., Mori N., Ohtsuka I., et al. . (1999). Segregation distortion through female gametophytes in interspecific hybrids of tetraploid wheat as revealed by RAPD analysis. Hereditas 131, 47–53. doi: 10.1111/j.1601-5223.1999.00047.x DOI
Marais G. F., Pretorius Z. A. (1996). Gametocidal effects and resistance to wheat leaf rust and stem rust in derivatives of a Triticum turgidum ssp. durum/Aegilops speltoides hybrid. Euphytica 88, 117–124. doi: 10.1007/BF00032442 DOI
Masoudi-Nejad A., Nasuda S., Bihoreau M.-T., Waugh R., Endo T. R. (2005). An alternative to radiation hybrid mapping for large-scale genome analysis in barley. Mol. Genet. Genomics 274, 589–594. doi: 10.1007/s00438-005-0052-1 PubMed DOI
Mattera M. G., Ávila C. M., Atienza S. G., Cabrera A. (2015). Cytological and molecular characterization of wheat-Hordeum chilense chromosome 7Hch introgression lines. Euphytica 203, 165–176. doi: 10.1007/s10681-014-1292-0 DOI
McClintock B. (1941). The stability of broken ends of chromosomes in Zea mays . Genetics 26, 234–282. doi: 10.1093/genetics/26.2.234 PubMed DOI PMC
Miller T. E., Hutchinson J., Chapman V. (1982). Investigation of a preferentially transmitted Aegilops sharonensis chromosome in wheat. Theoret. Appl. Genet. 61, 27–33. doi: 10.1007/BF00261506 PubMed DOI
Moav J., Moav R., Zohary D. (1968). Spontaneous morphological alterations of chromosomes in Nicotiana hybrids. Genetics 59, 57–63. doi: 10.1093/genetics/59.1.57 PubMed DOI PMC
Molnár I., Benavente E., Molnár-Láng M. (2009). Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum-Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 52, 156–165. doi: 10.1139/g08-114 PubMed DOI
Molnár I., Cifuentes M., Schneider A., Benavente E., Molnár-Láng M. (2011). Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann. Bot. 107, 65–76. doi: 10.1093/aob/mcq215 PubMed DOI PMC
Molnár I., Vrána J., Burešová V., Cápal P., Farkas A., Darkó É., et al. . (2016). Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 88, 452–467. doi: 10.1111/tpj.13266 PubMed DOI
Molnár-Láng M., Novotny C., Linc G., Naoy E. D. (2005). Changes in the meiotic pairing behaviour of a winter wheat-winter barley hybrid maintained for a long term in tissue culture, and tracing the barley chromatin in the progeny using GISH and SSR markers. Plant Breed. 124, 247–252. doi: 10.1111/j.1439-0523.2005.01097.x DOI
Nasuda S., Friebe B., Gill B. S. (1998). Gametocidal genes induce chromosome breakage in the interphase prior to the first mitotic cell division of the male gametophyte in wheat. Genetics 149, 1115–1124. doi: 10.1093/genetics/149.2.1115 PubMed DOI PMC
Nasuda S., Kikkawa Y., Ashida T., Islam A. K. M. R., Sato K., Endo T. R. (2005). Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet. Syst. 80, 357–366. doi: 10.1266/ggs.80.357 PubMed DOI
Niranjana M. (2017). Gametocidal genes of Aegilops: segregation distorters in wheat–Aegilops wide hybridization. Genome 60, 639–647. doi: 10.1139/gen-2017-0023 PubMed DOI
Niranjana M., Vinod, Sharma J. B., Mallick N., Tomar S. M. S., Jha S. K. (2017). Cytogenetic analysis and mapping of leaf rust resistance in Aegilops speltoides Tausch derived bread wheat line Selection2427 carrying putative gametocidal gene(s). Genome 60, 1076–1085. doi: 10.1139/gen-2017-0107 PubMed DOI
Nomura T., Ishihara A., Imaishi H., Ohkawa H., Endo T. R., Iwamura H. (2003). Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species. Planta 217, 776–782. doi: 10.1007/s00425-003-1040-5 PubMed DOI
Ochoa V., Madrid E., Said M., Rubiales D., Cabrera A. (2015). Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica 201, 89–95. doi: 10.1007/s10681-014-1190-5 DOI
Palomino C., Cabrera A. (2019). Development of wheat—Hordeum chilense Chromosome 2Hch Introgression Lines Potentially Useful for Improving Grain Quality Traits. Agronomy 9, 493. doi: 10.3390/agronomy9090493 DOI
Qi L., Echalier B., Friebe B., Gill B. S. (2003). Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct. Integr. Genomics 3, 39–55. doi: 10.1007/s10142-002-0063-5 PubMed DOI
Qi L., Friebe B., Zhang P., Gill B. S. (2007). Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 15, 3–19. doi: 10.1007/s10577-006-1108-8 PubMed DOI
Rick C. M. (1966). Abortion of male and female gametes in the tomato determined by allelic interaction. Genetics 53, 85–96. doi: 10.1093/genetics/53.1.85 PubMed DOI PMC
Said M., Cabrera A. (2009). A physical map of chromosome 4Hch from H. chilense containing SSR, STS and EST-SSR molecular markers. Euphytica 167, 253–259. doi: 10.1007/s10681-009-9895-6 DOI
Said M., Holušová K., Farkas A., Ivanizs L., Gaál E., Cápal P., et al. . (2021). Development of DNA Markers From Physically Mapped Loci in Aegilops comosa and Aegilops umbellulata Using Single-Gene FISH and Chromosome Sequences. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.689031 PubMed DOI PMC
Said M., Kubaláková M., Karafiátová M., Molnár I., Doležel J., Vrána J. (2019. a). Dissecting the complex genome of crested wheatgrass by chromosome flow sorting. Plant Genome 12, 180096. doi: 10.3835/plantgenome2018.12.0096 PubMed DOI
Said M., Parada A. C., Gaál E., Molnár I., Cabrera A., Doležel J., et al. . (2019. b). Uncovering homeologous relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers. Theor. Appl. Genet. 132, 2881–2898. doi: 10.1007/s00122-019-03394-1 PubMed DOI PMC
Said M., Recio R., Cabrera A. (2012). Development and characterisation of structural changes in chromosome 3Hch from Hordeum chilense in common wheat and their use in physical mapping. Euphytica 188, 429–440. doi: 10.1007/s10681-012-0712-2 DOI
Sakai K., Nasuda S., Sato K., Endo T. R. (2009). Dissection of barley chromosome 3H in common wheat and a comparison of 3H physical and genetic maps. Genes Genet. Syst. 84, 25–34. doi: 10.1266/ggs.84.25 PubMed DOI
Sakata M., Nasuda S., Endo T. R. (2010). Dissection of barley chromosome 4H in common wheat by the gametocidal system and cytological mapping of chromosome 4H with EST markers. Genes Genet. Syst. 85, 19–29. doi: 10.1266/ggs.85.19 PubMed DOI
Sandler L., Hiraizumi Y., Sandler I. (1959). Meiotic drive in natural populations of Drosophila melanogaster. I. the cytogenetic basis of segregation-distortion. Genetics 44, 233–250. doi: 10.1093/genetics/44.2.233 PubMed DOI PMC
Sandler L., Novitski E. (1957). Meiotic drive as an evolutionary force. Am. Nat. 91, 105–110. doi: 10.1086/281969 DOI
Sano Y. (1990). The genic nature of gamete eliminator in rice. Genetics 125, 183–191. doi: 10.1093/genetics/125.1.183 PubMed DOI PMC
Schmidt C., Schindele P., Puchta H. (2020). From gene editing to genome engineering: restructuring plant chromosomes via CRISPR/Cas. aBIOTECH 1, 21–31. doi: 10.1007/s42994-019-00002-0 PubMed DOI PMC
Schubert I., Pecinka A., Meister A., Schubert V., Klatte M., Jovtchev G. (2004). DNA damage processing and aberration formation in plants. Cytogenetic Genome Res. 104, 104–108. doi: 10.1159/000077473 PubMed DOI
Serizawa N., Nasuda S., Shi F., Endo T. R., Prodanovic S., Schubert I., et al. . (2001). Deletion-based physical mapping of barley chromosome 7H. Theor. Appl. Genet. 103, 827–834. doi: 10.1007/s001220100703 DOI
Serra H., Svačina R., Baumann U., Whitford R., Sutton T., Bartoš J., et al. . (2021). Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination. Nat. Commun. 12, 803. doi: 10.1038/s41467-021-21127-1 PubMed DOI PMC
Shi F., Endo T. R. (1999). Genetic induction of structural changes in barley chromosomes added to common wheat by a gametocidal chromosome derived from Aegilops cylindrica . Genes Genet. Syst. 74, 49–54. doi: 10.1266/ggs.74.49 DOI
Silver L. M. (1985). MOUSE tau HAPLOTYPES. Annu. Rev. Genet. 19, 179–208. doi: 10.1146/annurev.ge.19.120185.001143 PubMed DOI
Silver L. M. (1993). The peculiar journey of a selfish chromosome: mouse t haplotypes and meiotic drive. Trends Genet. 9, 250–254. doi: 10.1016/0168-9525(93)90090-5 PubMed DOI
Svačina R., Karafiátová M., Malurová M., Serra H., Vítek D., Endo T. R., et al. . (2020). Development of deletion lines for chromosome 3D of bread wheat. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.01756 PubMed DOI PMC
Symington L. S. (2016). Mechanism and regulation of DNA end resection in eukaryotes. Crit. Rev. Biochem. Mol. Biol. 51, 195–212. doi: 10.3109/10409238.2016.1172552 PubMed DOI PMC
Szakács E., Molnár-Láng M. (2010). Molecular cytogenetic evaluation of chromosome instability in Triticum aestivum-Secale cereale disomic addition lines. J. Appl. Genet. 51, 149–152. doi: 10.1007/BF03195723 PubMed DOI
Taketa S., Kato J., Takeda K. (1995). High crossability of wild barley (Hordeum spontaneum C. Koch) with bread wheat and the differential elimination of barley chromosomes in the hybrids. Theor. Appl. Genet. 91, 1203–1209. doi: 10.1007/BF00220930 PubMed DOI
Tsujimoto H. (1995). Gametocidal genes in wheat and its relatives. IV. Functional relationships between six gametocidal genes. Genome 38, 283–289. doi: 10.1139/g95-035 PubMed DOI
Tsujimoto H. (2005). Gametocidal genes in wheat as the inducer of chromosome breakage. Wheat Inf Serv. 100, 33–48.
Tsujimoto H., Noda K. (1989). Structure of chromosome 5A of wheat speltoid mutants induced by the gametocidal genes of Aegilops speltoides . Genome 32, 1085–1090. doi: 10.1139/g89-558 DOI
Tsujimoto H., Noda K. (1990). Deletion mapping by gametocidal genes in common wheat: position of speltoid suppression (Q) and β-amylase (β-Amy-A2) genes on chromosome 5A. Genome 33, 850–853. doi: 10.1139/g90-128 DOI
Tsujimoto H., Tsunewaki K. (1984). Gametocidal genes in wheat and its relatives. I. Genetic analyses in common wheat of a gametocidal gene derived from Aegilops speltoides . Can. J. Genet. Cytol. 26, 78–84. doi: 10.1139/g84-013 DOI
Tsujimoto H., Tsunewaki K. (1985. a). Gametocidal genes in wheat and its relatives. II. Suppressor of the chromosome 3C gametocidal gene of Aegilops triuncialis . Can. J. Genet. Cytol. 27, 178–185. doi: 10.1139/g85-027 DOI
Tsujimoto H., Tsunewaki K. (1985. b). Hybrid dysgenesis in common wheat caused by gametocidal genes. Japanese J. Genet. 60, 565–578. doi: 10.1266/jjg.60.565 DOI
Tsujimoto H., Tsunewaki K. (1988). Gametocidal genes in wheat and its relatives. III. Chromosome location and effects of two Aegilops speltoides-derived gametocidal genes in common wheat. Genome 30, 239–244. doi: 10.1139/g88-041 DOI
Tsujimoto H., Yamada T., Sasakuma T. (1997). Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proc. Natl. Acad. Sci. 94, 3140–3144. doi: 10.1073/pnas.94.7.3140 PubMed DOI PMC
Tsunewaki K. (2015). “Prof. H. Kihara’s Genome Concept and Advancements in Wheat Cytogenetics in His School,” in Advances in Wheat Genetics: From Genome to Field. Eds. Ogihara Y., Takumi S., Handa H. (Springer Japan, Tokyo: ), 3–11. doi: 10.1007/978-4-431-55675-6_1 DOI
Türkösi E., Ivanizs L., Farkas A., Gaál E., Kruppa K., Kovács P., et al. . (2022). Transfer of the ph1b Deletion Chromosome 5B From Chinese Spring Wheat Into a Winter Wheat Line and Induction of Chromosome Rearrangements in Wheat-Aegilops biuncialis Hybrids. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.875676 PubMed DOI PMC
Türkösi E., Szakács É., Ivanizs L., Farkas A., Gaál E., Said M., et al. . (2024). A chromosome arm from Thinopyrum intermedium × Thinopyrum ponticum hybrid confers increased tillering and yield potential in wheat. Mol. Breed. 44, 7. doi: 10.1007/s11032-024-01439-y PubMed DOI PMC
Werner J. E., Kota R. S., Gill B. S., Endo T. R. (1992). Distribution of telomeric repeats and their role in the healing of broken chromosome ends in wheat. Genome 35, 844–848. doi: 10.1139/g92-128 DOI
Yamano S., Nitta M., Tsujimoto H., Ishikawa G., Nakamura T., Endo T. R., et al. . (2010). Molecular mapping of the suppressor gene Igc1 to the gametocidal gene Gc3-C1 in common wheat. Genes Genet. Syst. 85, 43–53. doi: 10.1266/ggs.85.43 PubMed DOI
Zhang H.-B., Dvořák J. (1990). Characterization and distribution of an interspersed repeated nucleotide sequence from Lophopyrum elongatum and mapping of a segregation-distortion factor with it. Genome 33, 927–936. doi: 10.1139/g90-139 PubMed DOI
Zhang R., Sun B., Chen J., Cao A., Xing L., Feng Y., et al. . (2016). Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor. Appl. Genet. 129, 1975–1984. doi: 10.1007/s00122-016-2753-8 PubMed DOI
Zuo E., Huo X., Yao X., Hu X., Sun Y., Yin J., et al. . (2017). CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biol. 18, 224. doi: 10.1186/s13059-017-1354-4 PubMed DOI PMC