Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid34088847

B chromosomes are enigmatic elements in thousands of plant and animal genomes that persist in populations despite being nonessential. They circumvent the laws of Mendelian inheritance but the molecular mechanisms underlying this behavior remain unknown. Here we present the sequence, annotation, and analysis of the maize B chromosome providing insight into its drive mechanism. The sequence assembly reveals detailed locations of the elements involved with the cis and trans functions of its drive mechanism, consisting of nondisjunction at the second pollen mitosis and preferential fertilization of the egg by the B-containing sperm. We identified 758 protein-coding genes in 125.9 Mb of B chromosome sequence, of which at least 88 are expressed. Our results demonstrate that transposable elements in the B chromosome are shared with the standard A chromosome set but multiple lines of evidence fail to detect a syntenic genic region in the A chromosomes, suggesting a distant origin. The current gene content is a result of continuous transfer from the A chromosomal complement over an extended evolutionary time with subsequent degradation but with selection for maintenance of this nonvital chromosome.

Zobrazit více v PubMed

Wilson E. B., The supernumerary chromosomes of Hemiptera. Science 26, 870–871 (1907).

D’Ambrosio U., et al. ., B-chrom: A database on B-chromosomes of plants, animals and fungi. New Phytol. 216, 635–642 (2017). PubMed

Ruban A., et al. ., Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development. Nat. Commun. 11, 2764 (2020). PubMed PMC

Roman H., Directed fertilization in maize. Proc. Natl. Acad. Sci. U.S.A. 34, 36–42 (1948). PubMed PMC

Werren J. H., Nur U., Eickbush D., An extrachromosomal factor causing loss of paternal chromosomes. Nature 327, 75–76 (1987). PubMed

Jones R. N., Rees H., B Chromosomes (Academic Press, 1982), (February 8, 2016).

Ayonoadu U., Rees H., The influence of B-chromosomes on chiasma frequencies in Black Mexican Sweet Corn. Genetica 39, 75–81 (1968).

Cameron F. M., Rees H., The influence of B chromosomes on meiosis in Lolium. Heredity 22, 446–450 (1967).

Longley A. E., Supernumerary chromosomes in Zea mays. J. Agric. Res. 35, 769–784 (1927).

Randolph L. F., Genetic characteristics of the B chromosomes in maize. Genetics 26, 608–631 (1941). PubMed PMC

Carlson W. R., The B chromosome of corn. Annu. Rev. Genet. 12, 5–23 (1978). PubMed

McClintock B., Kato T. A., Blumenschein A., Chromosome Constitution of the Races of Maize : Its Significance in the Interpretation of Relationships between Races and Varieties in the Americas (Colegio de Postgraduados, Escuela National de Agricultura, Chapingo, Edo, Mexico, 1981).

Roman H., Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics 32, 391–409 (1947). PubMed PMC

Rhoades M. M., Dempsey E., Ghidoni A., Chromosome elimination in maize induced by supernumerary B chromosomes. Proc. Natl. Acad. Sci. U.S.A. 57, 1626–1632 (1967). PubMed PMC

Hanson G. P., B-chromosome-stimulated crossing over in maize. Genetics 63, 601–609 (1969). PubMed PMC

Nel P. M., The modification of crossing over in maize by extraneous chromosomal elements. Theor. Appl. Genet. 43, 196–202 (1973). PubMed

Ward E. J., Nondisjunction: Localization of the controlling site in the maize B chromosome. Genetics 73, 387–391 (1973). PubMed PMC

Carlson W. R., Roseman R. R., A new property of the maize B chromosome. Genetics 131, 211–223 (1992). PubMed PMC

González-Sánchez M., et al. ., Meiotic loss of the B chromosomes of maize is influenced by the B univalent co-orientation and the TR-1 knob constitution of the A chromosomes. Cytogenet. Genome Res. 119, 282–290 (2007). PubMed

Peng S.-F., Lin Y.-P., Lin B. Y., Characterization of AFLP sequences from regions of maize B chromosome defined by 12 B-10L translocations. Genetics 169, 375–388 (2005). PubMed PMC

Kao K.-W., Lin C.-Y., Peng S.-F., Cheng Y.-M., Characterization of four B-chromosome-specific RAPDs and the development of SCAR markers on the maize B-chromosome. Mol. Genet. Genomics 290, 431–441 (2015). PubMed

Stark E. A., et al. ., Molecular analysis of the structure of the maize B-chromosome. Chromosome Res. 4, 15–23 (1996). PubMed

Alfenito M. R., Birchler J. A., Molecular characterization of a maize B chromosome centric sequence. Genetics 135, 589–597 (1993). PubMed PMC

Jiao Y., et al. ., Improved maize reference genome with single-molecule technologies. Nature 546, 524–527 (2017). PubMed PMC

Springer N. M., et al. ., The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat. Genet. 50, 1282–1288 (2018). PubMed

Sun S., et al. ., Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat. Genet. 50, 1289–1295 (2018). PubMed

Beckett J. B., “Cytogenetic, genetic and plant breeding applications of B–A translocations in maize” in Developments in Plant Genetics and Breeding, Gupta P. K., Tsuchiya T., Eds. (Elsevier, 1991), pp. 493–529.

Kaszás E., Birchler J. A., Misdivision analysis of centromere structure in maize. EMBO J. 15, 5246–5255 (1996). PubMed PMC

Jin W., et al. ., Molecular and functional dissection of the maize B chromosome centromere. Plant Cell 17, 1412–1423 (2005). PubMed PMC

Han F., Lamb J. C., Birchler J. A., High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc. Natl. Acad. Sci. U.S.A. 103, 3238–3243 (2006). PubMed PMC

Kato A., et al. ., Minichromosomes derived from the B chromosome of maize. Cytogenet. Genome Res. 109, 156–165 (2005). PubMed

Han F., Gao Z., Yu W., Birchler J. A., Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell 19, 3853–3863 (2007). PubMed PMC

Ma W., et al. ., Rye B chromosomes encode a functional Argonaute-like protein with in vitro slicer activities similar to its A chromosome paralog. New Phytol. 213, 916–928 (2017). PubMed

Makunin A. I., et al. ., Sequencing of supernumerary chromosomes of red fox and raccoon dog confirms a non-random gene acquisition by B chromosomes. Genes (Basel) 9, 405 (2018). PubMed PMC

Dalla Benetta E., Akbari O. S., Ferree P. M., Sequence expression of supernumerary B chromosomes: Function or fluff? Genes (Basel) 10, 123 (2019). PubMed PMC

Huang W., Du Y., Zhao X., Jin W., B chromosome contains active genes and impacts the transcription of A chromosomes in maize (Zea mays L.). BMC Plant Biol. 16, 88 (2016). PubMed PMC

Liu Y., et al. ., Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize. Proc. Natl. Acad. Sci. U.S.A. 112, E1263–E1271 (2015). PubMed PMC

Lamb J. C., Kato A., Birchler J. A., Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma 113, 337–349 (2005). PubMed

Lamb J. C., Han F., Auger D. L., Birchler J. A., A trans-acting factor required for non-disjunction of the B chromosome is located distal to the TB-4Lb breakpoint on the B chromosome. Maize Genet. Coop. News Lett. 80, 51–54 (2006).

Ward E. J., The heterochromatic B chromosome of maize: The segments affecting recombination. Chromosoma 43, 177–186 (1973).

Lin B.-Y., Regional control of nondisjunction of the B chromosome in maize. Genetics 90, 613–627 (1978). PubMed PMC

Masonbrink R. E., Birchler J. A., Accumulation of multiple copies of maize minichromosomes. Cytogenet. Genome Res. 137, 50–59 (2012). PubMed

Carlson W. R., A procedure for localizing genetic factors controlling mitotic nondisjunction in the B chromosome of maize. Chromosoma 42, 127–136 (1973).

Carlson W. R., Chou T.-S., B chromosome nondisjunction in corn: Control by factors near the centromere. Genetics 97, 379–389 (1981). PubMed PMC

Han F., Lamb J. C., Yu W., Gao Z., Birchler J. A., Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell 19, 524–533 (2007). PubMed PMC

Auger D. L., Birchler J. A., Maize tertiary trisomic stocks derived from B-A translocations. J. Hered. 93, 42–47 (2002). PubMed

Carlson W. R., Factors affecting preferential fertilization in maize. Genetics 62, 543–554 (1969). PubMed PMC

Birchler J. A., Chalfoun D. J., Levin D. M., Recombination in the B chromosome of maize to produce A-B-A chromosomes. Genetics 126, 723–733 (1990). PubMed PMC

Albert P. S., et al. ., Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc. Natl. Acad. Sci. U.S.A. 116, 1679–1685 (2019). PubMed PMC

Vogel J. P.et al. .; International Brachypodium Initiative , Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763–768 (2010). PubMed

Pryor A., Faulkner K., Rhoades M. M., Peacock W. J., Asynchronous replication of heterochromatin in maize. Proc. Natl. Acad. Sci. U.S.A. 77, 6705–6709 (1980). PubMed PMC

Bass H. W., et al. ., Defining multiple, distinct, and shared spatiotemporal patterns of DNA replication and endoreduplication from 3D image analysis of developing maize (Zea mays L.) root tip nuclei. Plant Mol. Biol. 89, 339–351 (2015). PubMed PMC

Wear E. E., et al. ., Genomic analysis of the DNA replication timing program during mitotic S phase in maize (Zea mays) root tips. Plant Cell 29, 2126–2149 (2017). PubMed PMC

Martis M. M., et al. ., Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc. Natl. Acad. Sci. U.S.A. 109, 13343–13346 (2012). PubMed PMC

Müntzing A., Genetical effects of duplicated fragment chromosomes in rye. Hereditas 29, 91–112 (1943).

Bellott D. W., Page D. C., Dosage-sensitive functions in embryonic development drove the survival of genes on sex-specific chromosomes in snakes, birds, and mammals. Genome Res. 31, 1–13 (2021). PubMed PMC

Tasdighian S., et al. ., Reciprocally retained genes in the angiosperm lineage show the hallmarks of dosage balance sensitivity. Plant Cell 29, 2766–2785 (2017). PubMed PMC

Zheng Y.-Z., Roseman R. R., Carlson W. R., Time course study of the chromosome-type breakage-fusion-bridge cycle in maize. Genetics 153, 1435–1444 (1999). PubMed PMC

Yu W., Birchler J. A., A green fluorescent protein-engineered haploid inducer line facilitates haploid mutant screens and doubled haploid breeding in maize. Mol. Breed. 36, 5 (2016).

Lu F., et al. ., High-resolution genetic mapping of maize pan-genome sequence anchors. Nat. Commun. 6, 6914 (2015). PubMed PMC

Hirsch C. N., et al. ., Draft assembly of elite inbred line PH207 provides insights into genomic and transcriptome diversity in maize. Plant Cell 28, 2700–2714 (2016). PubMed PMC

Hen-Avivi S., et al. ., A metabolic gene cluster in the wheat W1 and the barley cer-cqu loci determines β-diketone biosynthesis and glaucousness. Plant Cell 28, 1440–1460 (2016). PubMed PMC

Zhao G., et al. ., The Aegilops tauschii genome reveals multiple impacts of transposons. Nat. Plants 3, 946–955 (2017). PubMed

Luo M.-C., et al. ., Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017). PubMed PMC

Avni R., et al. ., Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93–97 (2017). PubMed

Putnam N. H., et al. ., Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016). PubMed PMC

Kurtz S., et al. ., Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004). PubMed PMC

Gremme G., Steinbiss S., Kurtz S., GenomeTools: A comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinformatics 10, 645–656 (2013). PubMed

Martin M., Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

Langmead B., Salzberg S. L., Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). PubMed PMC

Li J., et al. ., From gigabyte to kilobyte: A bioinformatics protocol for mining large RNA-seq transcriptomics data. PLoS One 10, e0125000 (2015). PubMed PMC

Wickham H., ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

Smit A., Hubley R., Green P., RepeatMasker Open-4.0 (2013). https://repeatmasker.org/. Accessed 1 June 2018.

Schnable P. S., et al. ., The B73 maize genome: Complexity, diversity, and dynamics. Science 326, 1112–1115 (2009). PubMed

Stanke M., Steinkamp R., Waack S., Morgenstern B., AUGUSTUS: A web server for gene finding in eukaryotes. Nucleic Acids Res. 32, W309–W312 (2004). PubMed PMC

Bolser D., Staines D. M., Pritchard E., Kersey P., Ensembl plants: Integrating tools for visualizing, mining, and analyzing plant genomics data. Methods Mol. Biol. 1374, 115–140 (2016). PubMed

Soderlund C., et al. ., Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs. PLoS Genet. 5, e1000740 (2009). PubMed PMC

Wang B., et al. ., Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat. Commun. 7, 11708 (2016). PubMed PMC

Law M., et al. ., Automated update, revision, and quality control of the maize genome annotations using MAKER-P improves the B73 RefGen_v3 gene models and identifies new genes. Plant Physiol. 167, 25–39 (2015). PubMed PMC

Grabherr M. G., et al. ., Trinity: Reconstructing a full-length transcriptome without a genome from RNA-seq data. Nat. Biotechnol. 29, 644–652 (2011). PubMed PMC

Nussbaumer T., et al. ., MIPS PlantsDB: A database framework for comparative plant genome research. Nucleic Acids Res. 41, D1144–D1151 (2013). PubMed PMC

Altschul S. F., et al. ., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997). PubMed PMC

Edgar R. C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). PubMed PMC

Gouy M., Guindon S., Gascuel O., SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010). PubMed

Lanfear R., Frandsen P. B., Wright A. M., Senfeld T., Calcott B., PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017). PubMed

Drummond A. J., Rambaut A., BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007). PubMed PMC

Drummond A. J., Suchard M. A., Xie D., Rambaut A., Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012). PubMed PMC

Salse J., et al. ., Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc. Natl. Acad. Sci. U.S.A. 106, 14908–14913 (2009). PubMed PMC

Wang L.-G., et al. ., Treeio: An R package for phylogenetic tree input and output with richly annotated and associated data. Mol. Biol. Evol. 37, 599–603 (2020). PubMed PMC

Yu G., Smith D. K., Zhu H., Guan Y., Lam T. T.-Y., ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

Paradis E., Schliep K., ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019). PubMed

Yu G., tidytree: A Tidy Tool for Phylogenetic Tree Data Manipulation. R package version 0.3.0 (2019). https://CRAN.R-project.org/package=tidytree. Accessed 27 May 2021.

Charif D., Lobry J. R., “SeqinR 1.0-2: A contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis” in Structural Approaches to Sequence Evolution: Molecules, Networks, Populations, Bastolla U., et al., Eds. (Biological and Medical Physics, Biomedical Engineering, Springer, 2007), pp. 207–232.

Wang D., Zhang Y., Zhang Z., Zhu J., Yu J., KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics 8, 77–80 (2010). PubMed PMC

Ananiev E. V., Phillips R. L., Rines H. W., Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc. Natl. Acad. Sci. U.S.A. 95, 13073–13078 (1998). PubMed PMC

Sharma A., Presting G. G., Centromeric retrotransposon lineages predate the maize/rice divergence and differ in abundance and activity. Mol. Genet. Genomics 279, 133–147 (2008). PubMed

Thorvaldsdóttir H., Robinson J. T., Mesirov J. P., Integrative genomics viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013). PubMed PMC

Barrett T., et al. ., NCBI GEO: Archive for functional genomics data sets–Update. Nucleic Acids Res. 41, D991–D995 (2013). PubMed PMC

Li H., Durbin R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC

Li H.et al. .; 1000 Genome Project Data Processing Subgroup , The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). PubMed PMC

Quinlan A. R., Hall I. M., BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). PubMed PMC

Zhang B., et al. ., Formation of a functional maize centromere after loss of centromeric sequences and gain of ectopic sequences. Plant Cell 25, 1979–1989 (2013). PubMed PMC

Su H., et al. ., Centromere satellite repeats have undergone Rapid changes in polyploid wheat subgenomes. Plant Cell 31, 2035–2051 (2019). PubMed PMC

R Core Team , R: A Language and Environment for Statistical Computing, Vienna, Austria (2018). https://www.R-project.org/. Accessed 27 May 2021.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...