The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly

. 2024 Nov 08 ; 15 (1) : 9686. [epub] 20241108

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39516474

Grantová podpora
HO1779/30-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
HO1779/30-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
HO1779/34-1 Deutsche Forschungsgemeinschaft (German Research Foundation)

Odkazy

PubMed 39516474
PubMed Central PMC11549084
DOI 10.1038/s41467-024-53799-w
PII: 10.1038/s41467-024-53799-w
Knihovny.cz E-zdroje

The genomes of many plants, animals, and fungi frequently comprise dispensable B chromosomes that rely upon various chromosomal drive mechanisms to counteract the tendency of non-essential genetic elements to be purged over time. The B chromosome of rye - a model system for nearly a century - undergoes targeted nondisjunction during first pollen mitosis, favouring segregation into the generative nucleus, thus increasing their numbers over generations. However, the genetic mechanisms underlying this process are poorly understood. Here, using a newly-assembled, ~430 Mb-long rye B chromosome pseudomolecule, we identify five candidate genes whose role as trans-acting moderators of the chromosomal drive is supported by karyotyping, chromosome drive analysis and comparative RNA-seq. Among them, we identify DCR28, coding a microtubule-associated protein related to cell division, and detect this gene also in the B chromosome of Aegilops speltoides. The DCR28 gene family is neo-functionalised and serially-duplicated with 15 B chromosome-located copies that are uniquely highly expressed in the first pollen mitosis of rye.

Zobrazit více v PubMed

Jones, R. N. & Rees, H. B Chromosomes 1st edn (Academic Press, London, New York 1982).

Ferree, P. M. et al. What is a B chromosome? Early definitions revisited. G314, 6 (2024). PubMed PMC

Garcia, S. & Nualart, N. Plant Genomic and Cytogenetic Databases (Springer, 2023).

Bougourd, S. M. & Jones, R. N. B chromosomes: a physiological enigma. New Phytol.137, 43–54 (1997).

Chen, J., Birchler, J. A. & Houben, A. The non-Mendelian behavior of plant B chromosomes. Chromosome Res.30, 229–239 (2022). PubMed PMC

Camacho, J. P. M., Sharbel, T. F. & Beukeboom, L. W. B-chromosome evolution. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.355, 163–178 (2000). PubMed PMC

Camacho, J. P. M. Non-Mendelian segregation and transmission drive of B chromosomes. Chromosome Res.30, 217–228 (2022). PubMed

Jones, R. N. Transmission and drive involving parasitic B chromosomes. Genes9, 388 (2018). PubMed PMC

Ruban, A., Schmutzer, T., Scholz, U. & Houben, A. How next-generation sequencing has aided our understanding of the sequence composition and origin of B chromosomes. Genes8, 294 (2017). PubMed PMC

Blavet, N. et al. Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proc. Natl. Acad. Sci. USA118, e2104254118 (2021). PubMed PMC

Dalla Benetta, E. et al. Genome elimination mediated by gene expression from a selfish chromosome. Sci. Adv.6, eaaz9808 (2020). PubMed PMC

Mikhailova, E. & Doležel, J. Rye cytogenetics and chromosome genomics. In The Rye Genome. (eds Rabanus-Wallace, M. T. & Stein, N.). (Compendium of Plant Genomes. Springer, Cham, 2021).

Martis, M. M. et al. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc. Natl. Acad. Sci. USA109, 13343–13346 (2012). PubMed PMC

Banaei-Moghaddam, A. M., Meier, K., Karimi-Ashtiyani, R. & Houben, A. Formation and expression of pseudogenes on the B chromosome of rye. Plant Cell25, 2536–2544 (2013). PubMed PMC

Ma, W. et al. Rye B chromosomes encode a functional Argonaute-like protein with in vitro slicer activities similar to its A chromosome paralog. New Phytol.213, 916–928 (2017). PubMed

Boudichevskaia, A., Fiebig, A., Kumke, K., Himmelbach, A. & Houben, A. Rye B chromosomes differently influence the expression of A chromosome-encoded genes depending on the host species. Chromosome Res.30, 335–349 (2022). PubMed PMC

Ma, W., Liu, Z., Beier, S., Houben, A. & Carpentier, S. Identification of rye B chromosome-associated peptides by mass spectrometry. New Phytol.230, 2179–2185 (2021). PubMed

Puertas, M. J., Gonzalez-Sanchez, M., Manzanero, S., Romera, F. & Jimenez, M. M. Genetic control of the rate of transmission of rye B chromosomes. IV. Localization of the genes controlling B transmission rate. Heredity80, 209–213 (1998).

Hasegawa, N. A cytological study on 8-chromosome rye. Cytologia6, 68–77 (1934).

Banaei-Moghaddam, A. M. et al. Nondisjunction in favor of a chromosome: the mechanism of rye B chromosome drive during pollen mitosis. Plant Cell24, 4124–4134 (2012). PubMed PMC

Endo, T. R. et al. Dissection of rye B chromosomes, and nondisjunction properties of the dissected segments in a common wheat background. Genes Genet. Syst.83, 23–30 (2008). PubMed

Müntzing, A. Cytological studies of extra fragment chromosomes in rye. II. Transmission and multiplication of standard fragments and iso‐fragments. Hereditas31, 457–477 (1945). PubMed

Müntzing, A. Cytological studies of extra fragment chromosomes in rye: V. A new fragment type arisen by deletion. Hereditas34, 435–442 (1948).

Lima-de-Faria, A. The evolution of the structural pattern in a rye B chromosome. Evolution17, 289–295 (1963).

Carchilan, M. et al. Transcriptionally active heterochromatin in rye B chromosomes. Plant Cell19, 1738–1749 (2007). PubMed PMC

Klemme, S. et al. High‐copy sequences reveal distinct evolution of the rye B chromosome. New Phytol.199, 550–558 (2013). PubMed

Niwa, K. & Sakamoto, S. Origin of B chromosomes in cultivated rye. Genome38, 307–312 (1995). PubMed

Niwa, K. & Sakamoto, S. Detection of B chromosomes in rye collected from Pakistan and China. Hereditas124, 211–216 (1996).

Lindström, J. Transfer to wheat of accessory chromosomes from rye. Hereditas54, 149–155 (1965).

Jones, R. N. & Puertas, M. J. The B-chromosomes of rye (Secale cereale L.). in Frontiers in Plant Science Research (eds Dhir, K. K. & Sareen, T. S.) 81–112 (Bhagwati Enterprises, Delhi, India, 1993).

Macas, J. et al. Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes. PLoS Genet.19, e1010633 (2023). PubMed PMC

Navrátilová, P. et al. Prospects of telomere‐to‐telomere assembly in barley: analysis of sequence gaps in the MorexV3 reference genome. Plant Biotechnol. J.20, 1373–1386 (2022). PubMed PMC

Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res.46, e126 (2018). PubMed PMC

IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science361, eaar7191 (2018). PubMed

Rabanus-Wallace, M. T. et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat. Genet.53, 564–573 (2021). PubMed PMC

van Schie, J. J. et al. Warsaw Breakage Syndrome associated DDX11 helicase resolves G-quadruplex structures to support sister chromatid cohesion. Nat. Commun.11, 4287 (2020). PubMed PMC

Langdon, T. et al. De novo evolution of satellite DNA on the rye B chromosome. Genetics154, 869–884 (2000). PubMed PMC

Mendelson, D. & Zohary, D. Behaviour and transmission of supernumerary chromosomes in Aegilops speltoides. Heredity29, 329–339 (1972).

Wu, D. et al. Nondisjunction and unequal spindle organization accompany the drive of Aegilops speltoides B chromosomes. New Phytol.223, 1340–1352 (2019). PubMed

Marques, A. et al. B chromosomes of rye are highly conserved and accompanied the development of early agriculture. Ann. Bot.112, 527–534 (2013). PubMed PMC

Hastings, P. J., Lupski, J. R., Rosenberg, S. M. & Ira, G. Mechanisms of change in gene copy number. Nat. Rev. Genet.10, 551–564 (2009). PubMed PMC

Muirhead, C. A. & Presgraves, D. C. Satellite DNA-mediated diversification of a sex-ratio meiotic drive gene family in Drosophila. Nat. Ecol. Evol.5, 1604–1612 (2021). PubMed PMC

Cocquet, J. et al. The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis. PLoS Biol.7, e1000244 (2009). PubMed PMC

Kruger, A. N. et al. A neofunctionalized X-linked ampliconic gene family is essential for male fertility and equal sex ratio in mice. Curr. Biol.29, 3699–3706.e3695 (2019). PubMed PMC

Eickbush, M. T., Young, J. M. & Zanders, S. E. Killer meiotic drive and dynamic evolution of the wtf gene family. Mol. Biol. Evol.36, 1201–1214 (2019). PubMed PMC

Marc, J. et al. A GFP–MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell10, 1927–1939 (1998). PubMed PMC

Sheahan, M. B., Staiger, C. J., Rose, R. J. & McCurdy, D. W. A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol.136, 3968–3978 (2004). PubMed PMC

Xu, J., Lee, Y. R. J. & Liu, B. Establishment of a mitotic model system by transient expression of the D‐type cyclin in differentiated leaf cells of tobacco (Nicotiana benthamiana). New Phytol.226, 1213–1220 (2020). PubMed

Cheng, H., Asri, M., Lucas, J., Koren, S. & Li, H. Scalable telomere-to-telomere assembly for diploid and polyploid genomes with double graph. Nat. Methods21, 967–970 (2024). PubMed PMC

Rautiainen, M. et al. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat. Biotechnol.41, 1474–1482 (2023). PubMed PMC

Dolezel, J., Cizkova, J., Simkova, H. & Bartos, J. One major challenge of sequencing large plant genomes is to know how big they really are. Int J. Mol. Sci.19, 3354 (2018). PubMed PMC

Schlebusch, S. A. et al. Rapid gene content turnover on the germline-restricted chromosome in songbirds. Nat. Commun.14, 4579 (2023). PubMed PMC

Dawe, R. K. et al. A kinesin-14 motor activates neocentromeres to promote meiotic drive in maize. Cell173, 839–850.e818 (2018). PubMed

Didion, J. P. et al. A multi-megabase copy number gain causes maternal transmission ratio distortion on mouse chromosome 2. PLoS Genet.11, e1004850 (2015). PubMed PMC

De Carvalho, M. et al. The wtf meiotic driver gene family has unexpectedly persisted for over 100 million years. Elife11, e81149 (2022). PubMed PMC

Didion, J. P. et al. R2d2 drives selfish sweeps in the house mouse. Mol. Biol. Evol.33, 1381–1395 (2016). PubMed PMC

Jin, W. W. et al. Molecular and functional dissection of the maize B chromosome centromere. Plant Cell17, 1412–1423 (2005). PubMed PMC

Clark, F. E. et al. An egg sabotaging mechanism drives non-Mendelian transmission in mice. Current Biology34, 3845–3854.e4 (2024). PubMed PMC

Ruban, A. et al. Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development. Nat. Commun.11, 2764 (2020). PubMed PMC

Kinsella, C. M. et al. Programmed DNA elimination of germline development genes in songbirds. Nat. Commun.10, 5468 (2019). PubMed PMC

Ribeiro, T. et al. Evidence for ‘cross-talk’ between A and B chromosomes of rye. Proc. Biol. Sci.271, S482–S484 (2004). Suppl 6. PubMed PMC

Niwa, K., Horiuchi, G. & Hirai, Y. Production and characterization of common wheat with B chromosomes of rye from Korea. Hereditas126, 139–146 (1997).

Martin, K. et al. Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J.59, 150–162 (2009). PubMed

Blunden, R. et al. Identification of the E3900 family, a second family of rye B chromosome specific repeated sequences. Genome36, 706–711 (1993). PubMed

Tomita, M., Shinohara, K. & Morimoto, M. Revolver is a new class of transposon-like gene composing the Triticeae genome. DNA Res.15, 49–62 (2008). PubMed PMC

Sandery, M. J., Forster, J. W., Blunden, R. & Jones, R. N. Identification of a family of repeated sequences on the rye B chromosome. Genome33, 908–913 (1990). PubMed

Chen, J. et al. Cytological and molecular characterization of Thinopyrum bessarabicum chromosomes and structural rearrangements introgressed in wheat. Mol. Breed.39, 1–14 (2019).

Aliyeva-Schnorr, L. et al. Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination‐poor region comprises more than half of barley chromosome 3H. Plant J.84, 385–394 (2015). PubMed

Han, F., Lamb, J. C., Yu, W., Gao, Z. & Birchler, J. A. Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell19, 524–533 (2007). PubMed PMC

Rusche, M. L. et al. B chromosome behavior in maize pollen as determined by a molecular probe. Genetics147, 1915–1921 (1997). PubMed PMC

Kubalová, I., Němečková, A., Weisshart, K., Hřibová, E. & Schubert, V. Comparing super-resolution microscopy techniques to analyze chromosomes. Int. J. Mol. Sci.22, 1903 (2021). PubMed PMC

Weisshart, K., Fuchs, J. & Schubert, V. Structured illumination microscopy (SIM) and photoactivated localization microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules on flow-sorted Arabidopsis nuclei. Bio Protoc.6, e1725 (2016).

Mascher, M. et al. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J.76, 494–505 (2013). PubMed PMC

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120 (2014). PubMed PMC

Vondrak, T. et al. Characterization of repeat arrays in ultra‐long nanopore reads reveals frequent origin of satellite DNA from retrotransposon‐derived tandem repeats. Plant J.101, 484–500 (2020). PubMed PMC

Padmarasu, S., Himmelbach, A., Mascher, M. & Stein, N. In SituHi-C for Plants: An Improved Method to Detect Long-Range ChromatinInteractions. In Plant LongNon-Coding RNAs. Methods in Molecular Biology (eds Chekanova, J. A. & Wang, HL.V.) vol 1933 (Humana Press, New York, NY, 2019). PubMed

Vrána, J., Cápal, P., Číhalíková, J., Kubaláková, M. & Doležel, J. Flow Sorting Plant Chromosomes. In Plant Cytogenetics. Methods in Molecular Biology (eds Kianian, S. & Kianian, P.) vol 1429 (Humana Press, NewYork, NY, 2016). PubMed

Šimková, H., Číhalíková, J., Vrána, J., Lysák, M. & Doležel, J. Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol. Plant.46, 369–373 (2003).

Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods18, 170–175 (2021). PubMed PMC

Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics29, 1072–1075 (2013). PubMed PMC

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics31, 3210–3212 (2015). PubMed

Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics39, btac808 (2023). PubMed PMC

Lopez-Delisle, L. et al. pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics37, 422–423 (2021). PubMed PMC

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012). PubMed PMC

Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics25, 2078–2079 (2009). PubMed PMC

Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol.37, 907–915 (2019). PubMed PMC

Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol.33, 290–295 (2015). PubMed PMC

Pertea, G. & Pertea, M. GFF utilities: GffRead and GffCompare. F1000Res.9 (2020). PubMed PMC

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods14, 417–419 (2017). PubMed PMC

Love, M., Anders, S. & Huber, W. Differential analysis of count data–the DESeq2 package. Genome Biol.15, 10–1186 (2014).

Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics28, 3150–3152 (2012). PubMed PMC

Ma, S. et al. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol. Plant14, 1965–1968 (2021). PubMed

Zhu, T. et al. PrimerServer: a high-throughput primer design and specificity-checking platform. Preprint at bioRxiv10.1101/181941 (2017).

Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc.8, 1494–1512 (2013). PubMed PMC

Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics23, 2947–2948 (2007). PubMed

Swofford, D.L. PAUP*: Phylogenetic analysis using parsimony (* and other methods), v4.0a169. (Sinauer Assoc., Sunderland 2002)

Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE3, e3647 (2008). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...