One Major Challenge of Sequencing Large Plant Genomes Is to Know How Big They Really Are

. 2018 Nov 11 ; 19 (11) : . [epub] 20181111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30423889

Grantová podpora
Award LO1204 from the National Program of Sustainability I The Czech Republic Ministry of Education, Youth and Sports

Any project seeking to deliver a plant or animal reference genome sequence must address the question as to the completeness of the assembly. Given the complexity introduced particularly by the presence of sequence redundancy, a problem which is especially acute in polyploid genomes, this question is not an easy one to answer. One approach is to use the sequence data, along with the appropriate computational tools, the other is to compare the estimate of genome size with an experimentally measured mass of nuclear DNA. The latter requires a reference standard in order to provide a robust relationship between the two independent measurements of genome size. Here, the proposal is to choose the human male leucocyte genome for this standard: its 1C DNA amount (the amount of DNA contained within unreplicated haploid chromosome set) of 3.50 pg is equivalent to a genome length of 3.423 Gbp, a size which is just 5% longer than predicted by the most current human genome assembly. Adopting this standard, this paper assesses the completeness of the reference genome assemblies of the leading cereal crops species wheat, barley and rye.

Zobrazit více v PubMed

He K., Lin K., Wang G., Li F. Genome sizes of nine insect species determined by flow cytometry and k-mer analysis. Front Physiol. 2016;7:569. doi: 10.3389/fphys.2016.00569. PubMed DOI PMC

Sun H., Ding J., Piednoël M., Schneeberger K. findGSE: Estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics. 2018;34:550–557. doi: 10.1093/bioinformatics/btx637. PubMed DOI

International Wheat Genome Sequencing Consortium Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361:eaar7191. doi: 10.1126/science.aar7191. PubMed DOI

Van’t Hof J. Cell population kinetics of excised roots of Pisum sativum. J. Cell Biol. 1965;27:179–189. doi: 10.1083/jcb.27.1.179. PubMed DOI PMC

Doležel J., Bartoš J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 2005;95:99–110. doi: 10.1093/aob/mci005. PubMed DOI PMC

Swift H. The constancy of desoxyribose nucleic acid in plant nuclei. Proc. Natl. Acad. Sci. USA. 1950;36:643–654. doi: 10.1073/pnas.36.11.643. PubMed DOI PMC

Greilhuber J., Doležel J., Lysák M.A., Bennett M.D. The origin, evolution and proposed stabilization of the terms ‘genome size’, and ‘C-value’ to describe nuclear DNA contents. Ann. Bot. 2005;95:255–260. doi: 10.1093/aob/mci019. PubMed DOI PMC

Doležel J., Greilhuber J., Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007;2:2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI

Tiersch T.R., Chandler R.W., Wachtel S.S., Elias S. Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry. 1989;10:706–710. doi: 10.1002/cyto.990100606. PubMed DOI

Shapiro H.S. Deoxyribonucleic acid content per cell of various organisms. In: Fasman G.D., editor. Handbook of Biochemistry and Molecular Biology. Volume 2. CRC Press; Cleveland, OH, USA: 1976. pp. 284–306.

Rasch E.M., Barr H.J., Rasch R.W. The DNA content of sperm of Drosophila melanogaster. Chromosoma. 1971;33:1–18. doi: 10.1007/BF00326379. PubMed DOI

Gregory T.R. Animal Genome Size Database. [(accessed on 25 October 2018)];2005 Available online: http://www.genomesize.com.

Doležel J., Greilhuber J. Nuclear genome size: Are we getting closer? Cytometry. 2010;77:635–642. doi: 10.1002/cyto.a.20915. PubMed DOI

International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. PubMed DOI

Venter J.C., Adams M.D., Myers W.W., Li P.W., Mural R.J., Sutton G.G. The sequence of the human genome. Science. 2001;291:1304–1351. doi: 10.1126/science.1058040. PubMed DOI

Seo J.S., Rhie A., Kim J., Lee S., Sohn M.H., Kim C.U., Hastie A., Cao H., Yun J.Y., Kim J., et al. De novo assembly and phasing of a Korean human genome. Nature. 2016;538:243–247. doi: 10.1038/nature20098. PubMed DOI

Jain M., Koren S., Miga K.H., Quick J., Rand A.C., Sasani T.A., Tyson J.R., Beggs A.D., Dilthey A.T., Fiddes I.T., et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 2018;36:338–345. doi: 10.1038/nbt.4060. PubMed DOI PMC

Doležel J., Bartoš J., Voglmayr H., Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry. 2003;51:127–128. doi: 10.1002/cyto.a.10013. PubMed DOI

Doležel J., Greilhuber J., Lucretti S., Meister A., Lysák M.A., Nardi L., Obermayer R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann. Bot. 1998;82:17–26. doi: 10.1093/oxfordjournals.aob.a010312. DOI

Praca-Fontes M.M., Carvalho C.R., Clarindo W.R., Cruz C.D. Revisiting the DNA C-values of the genome size-standards used in plant flow cytometry to choose the “best primary standards”. Plant Cell Rep. 2011;30:1183–1191. doi: 10.1007/s00299-011-1026-x. PubMed DOI

Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S.O., Wicker T., Radchuk V., Dockter C., Hedley P.E., Russell J., et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. doi: 10.1038/nature22043. PubMed DOI

Avni R., Nave M., Barad O., Baruch K., Twardziok S.O., Gundlach H., Hale I., Mascher M., Spannagl M., Wiebe K., et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–97. doi: 10.1126/science.aan0032. PubMed DOI

Doležel J., Binarová P., Lucretti S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant. 1989;31:113–120. doi: 10.1007/BF02907241. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly

. 2024 Nov 08 ; 15 (1) : 9686. [epub] 20241108

The Use of Flow Cytometry for Estimating Genome Sizes and DNA Ploidy Levels in Plants

Helical coiling of metaphase chromatids

. 2023 Apr 11 ; 51 (6) : 2641-2654.

Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants

. 2022 Sep ; 101 (9) : 710-724. [epub] 20210818

Prospects of telomere-to-telomere assembly in barley: Analysis of sequence gaps in the MorexV3 reference genome

. 2022 Jul ; 20 (7) : 1373-1386. [epub] 20220407

To Be or Not to Be Expressed: The First Evidence of a Nucleolar Dominance Tissue-Specificity in Brachypodium hybridum

. 2021 ; 12 () : 768347. [epub] 20211206

A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes

. 2021 Apr ; 53 (4) : 574-584. [epub] 20210318

The Dark Matter of Large Cereal Genomes: Long Tandem Repeats

. 2019 May 20 ; 20 (10) : . [epub] 20190520

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...