One Major Challenge of Sequencing Large Plant Genomes Is to Know How Big They Really Are
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Award LO1204 from the National Program of Sustainability I
The Czech Republic Ministry of Education, Youth and Sports
PubMed
30423889
PubMed Central
PMC6274785
DOI
10.3390/ijms19113554
PII: ijms19113554
Knihovny.cz E-zdroje
- Klíčová slova
- flow cytometry, genome size, nuclear DNA content, reference genome assembly, standardization,
- MeSH
- délka genomu * MeSH
- genom lidský MeSH
- genom rostlinný * MeSH
- lidé MeSH
- pšenice genetika MeSH
- referenční standardy MeSH
- sekvenční analýza DNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Any project seeking to deliver a plant or animal reference genome sequence must address the question as to the completeness of the assembly. Given the complexity introduced particularly by the presence of sequence redundancy, a problem which is especially acute in polyploid genomes, this question is not an easy one to answer. One approach is to use the sequence data, along with the appropriate computational tools, the other is to compare the estimate of genome size with an experimentally measured mass of nuclear DNA. The latter requires a reference standard in order to provide a robust relationship between the two independent measurements of genome size. Here, the proposal is to choose the human male leucocyte genome for this standard: its 1C DNA amount (the amount of DNA contained within unreplicated haploid chromosome set) of 3.50 pg is equivalent to a genome length of 3.423 Gbp, a size which is just 5% longer than predicted by the most current human genome assembly. Adopting this standard, this paper assesses the completeness of the reference genome assemblies of the leading cereal crops species wheat, barley and rye.
Zobrazit více v PubMed
He K., Lin K., Wang G., Li F. Genome sizes of nine insect species determined by flow cytometry and k-mer analysis. Front Physiol. 2016;7:569. doi: 10.3389/fphys.2016.00569. PubMed DOI PMC
Sun H., Ding J., Piednoël M., Schneeberger K. findGSE: Estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics. 2018;34:550–557. doi: 10.1093/bioinformatics/btx637. PubMed DOI
International Wheat Genome Sequencing Consortium Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361:eaar7191. doi: 10.1126/science.aar7191. PubMed DOI
Van’t Hof J. Cell population kinetics of excised roots of Pisum sativum. J. Cell Biol. 1965;27:179–189. doi: 10.1083/jcb.27.1.179. PubMed DOI PMC
Doležel J., Bartoš J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 2005;95:99–110. doi: 10.1093/aob/mci005. PubMed DOI PMC
Swift H. The constancy of desoxyribose nucleic acid in plant nuclei. Proc. Natl. Acad. Sci. USA. 1950;36:643–654. doi: 10.1073/pnas.36.11.643. PubMed DOI PMC
Greilhuber J., Doležel J., Lysák M.A., Bennett M.D. The origin, evolution and proposed stabilization of the terms ‘genome size’, and ‘C-value’ to describe nuclear DNA contents. Ann. Bot. 2005;95:255–260. doi: 10.1093/aob/mci019. PubMed DOI PMC
Doležel J., Greilhuber J., Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007;2:2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI
Tiersch T.R., Chandler R.W., Wachtel S.S., Elias S. Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry. 1989;10:706–710. doi: 10.1002/cyto.990100606. PubMed DOI
Shapiro H.S. Deoxyribonucleic acid content per cell of various organisms. In: Fasman G.D., editor. Handbook of Biochemistry and Molecular Biology. Volume 2. CRC Press; Cleveland, OH, USA: 1976. pp. 284–306.
Rasch E.M., Barr H.J., Rasch R.W. The DNA content of sperm of Drosophila melanogaster. Chromosoma. 1971;33:1–18. doi: 10.1007/BF00326379. PubMed DOI
Gregory T.R. Animal Genome Size Database. [(accessed on 25 October 2018)];2005 Available online: http://www.genomesize.com.
Doležel J., Greilhuber J. Nuclear genome size: Are we getting closer? Cytometry. 2010;77:635–642. doi: 10.1002/cyto.a.20915. PubMed DOI
International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062. PubMed DOI
Venter J.C., Adams M.D., Myers W.W., Li P.W., Mural R.J., Sutton G.G. The sequence of the human genome. Science. 2001;291:1304–1351. doi: 10.1126/science.1058040. PubMed DOI
Seo J.S., Rhie A., Kim J., Lee S., Sohn M.H., Kim C.U., Hastie A., Cao H., Yun J.Y., Kim J., et al. De novo assembly and phasing of a Korean human genome. Nature. 2016;538:243–247. doi: 10.1038/nature20098. PubMed DOI
Jain M., Koren S., Miga K.H., Quick J., Rand A.C., Sasani T.A., Tyson J.R., Beggs A.D., Dilthey A.T., Fiddes I.T., et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 2018;36:338–345. doi: 10.1038/nbt.4060. PubMed DOI PMC
Doležel J., Bartoš J., Voglmayr H., Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry. 2003;51:127–128. doi: 10.1002/cyto.a.10013. PubMed DOI
Doležel J., Greilhuber J., Lucretti S., Meister A., Lysák M.A., Nardi L., Obermayer R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann. Bot. 1998;82:17–26. doi: 10.1093/oxfordjournals.aob.a010312. DOI
Praca-Fontes M.M., Carvalho C.R., Clarindo W.R., Cruz C.D. Revisiting the DNA C-values of the genome size-standards used in plant flow cytometry to choose the “best primary standards”. Plant Cell Rep. 2011;30:1183–1191. doi: 10.1007/s00299-011-1026-x. PubMed DOI
Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S.O., Wicker T., Radchuk V., Dockter C., Hedley P.E., Russell J., et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. doi: 10.1038/nature22043. PubMed DOI
Avni R., Nave M., Barad O., Baruch K., Twardziok S.O., Gundlach H., Hale I., Mascher M., Spannagl M., Wiebe K., et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–97. doi: 10.1126/science.aan0032. PubMed DOI
Doležel J., Binarová P., Lucretti S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant. 1989;31:113–120. doi: 10.1007/BF02907241. DOI
The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly
The Use of Flow Cytometry for Estimating Genome Sizes and DNA Ploidy Levels in Plants
Helical coiling of metaphase chromatids
Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants
The Dark Matter of Large Cereal Genomes: Long Tandem Repeats