Plant DNA flow cytometry and estimation of nuclear genome size
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
15596459
PubMed Central
PMC4246710
DOI
10.1093/aob/mci005
PII: 95/1/99
Knihovny.cz E-zdroje
- MeSH
- buněčné jádro genetika MeSH
- DNA rostlinná genetika MeSH
- genetická variace MeSH
- genom rostlinný * MeSH
- průtoková cytometrie přístrojové vybavení metody trendy MeSH
- rostliny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA rostlinná MeSH
BACKGROUND: DNA flow cytometry describes the use of flow cytometry for estimation of DNA quantity in cell nuclei. The method involves preparation of aqueous suspensions of intact nuclei whose DNA is stained using a DNA fluorochrome. The nuclei are classified according to their relative fluorescence intensity or DNA content. Because the sample preparation and analysis is convenient and rapid, DNA flow cytometry has become a popular method for ploidy screening, detection of mixoploidy and aneuploidy, cell cycle analysis, assessment of the degree of polysomaty, determination of reproductive pathway, and estimation of absolute DNA amount or genome size. While the former applications are relatively straightforward, estimation of absolute DNA amount requires special attention to possible errors in sample preparation and analysis. SCOPE: The article reviews current procedures for estimation of absolute DNA amounts in plants using flow cytometry, with special emphasis on preparation of nuclei suspensions, stoichiometric DNA staining and the use of DNA reference standards. In addition, methodological pitfalls encountered in estimation of intraspecific variation in genome size are discussed as well as problems linked to the use of DNA flow cytometry for fieldwork. CONCLUSIONS: Reliable estimation of absolute DNA amounts in plants using flow cytometry is not a trivial task. Although several well-proven protocols are available and some factors controlling the precision and reproducibility have been identified, several problems persist: (1) the need for fresh tissues complicates the transfer of samples from field to the laboratory and/or their storage; (2) the role of cytosolic compounds interfering with quantitative DNA staining is not well understood; and (3) the use of a set of internationally agreed DNA reference standards still remains an unrealized goal.
Zobrazit více v PubMed
Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana Nature 408: 796–815. PubMed
Arumuganathan K, Earle ED. 1991. Estimation of nuclear DNA content of plants by flow cytometry. Plant Molecular Biology Reporter 9: 229–241.
Bagwell CB, Baker D, Whetstoe S, Munson M, Hitchcox S, Ault K, Lovett EJ. 1989. A simple and rapid method for determining the linearity of a flow cytometer amplification system. Cytometry 10: 689–694. PubMed
Baranyi M, Greilhuber J. 1995. Flow cytometric analysis of genome size variation in cultivated and wild Pisum sativum (Fabaceae). Plant Systematics and Evolution 194: 231–239.
Baranyi M, Greilhuber J. 1996. Flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum Theoretical and Applied Genetics 92: 297–307. PubMed
Baranyi M, Greilhuber J, Swiecicki WK. 1996. Genome size in wild Pisum species. Theoretical and Applied Genetics 93: 717–721. PubMed
Barow M, Meister A. 2002. Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47: 1–7. PubMed
Barow M, Meister A. 2003. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant, Cell and Environment 26: 571–584.
Barre P, Noirot M, Louarn J, Duperray C, Hamon S. 1996. Reliable flow cytometric estimation of Nuclear DNA content in coffee trees. Cytometry 24: 32–38. PubMed
Becker RL, Mikel UV. 1990. Interrelation of formalin fixation, chromatin compactness and DNA values as measured by flow cytometry and image cytometry. Analytical and Quantitative Cytology and Histology 12: 333–341. PubMed
Bennett MD, Leitch I. 1995. Nuclear DNA amounts in angiosperms. Annals of Botany 76: 113–176.
Bennett MD, Bhandol P, Leitch I. 2000. Nuclear DNA amounts in angiosperms and their modern uses: 807 new estimates. Annals of Botany 86: 859–909.
Bennett MD, Johnston S, Hodnett GL, Price HJ. 2000b.Allium cepa L. cultivars from four continents compared by flow cytometry show nuclear DNA constancy. Annals of Botany 85: 351–357.
Bennett MD, Leitch IJ, Price HJ, Johnston JS. 2003. Comparison with Caenorhabditis (∼100 Mb) and Drososphila (∼175 Mb) using flow cytometry show genome size in Arabidopsis to be ∼157 Mb and thus ∼25 % larger than the Arabidopsis Genome Initiative Estimate of ∼125 Mb. Annals of Botany 91: 547–557. PubMed PMC
Bennetzen JL, Kellogg EA. 1997. Do plants have a one-way ticket to genomic obesity? The Plant Cell 9: 1509–1514. PubMed PMC
Bennetzen J, Ma J, Devos KM. 2005. Mechanisms of recent genome size variation in flowering plants. Annals of Botany 95: 127–132. PubMed PMC
Blondon F, Marie D, Brown S, Kondorosi A. 1994. Genome size and base composition in Medicago sativa and M. truncatula species. Genome 37: 264–270. PubMed
Britten RJ, Kohne DE. 1968. Repeated sequences in DNA. Science 161: 529–540. PubMed
Bogunic F, Muratovic E., Brown SC, Siljak-Yakovkev S. 2003. Genome size and base composition of five Pinus species from Balkan region. Plant Cell Reports 22: 59–63. PubMed
Brown SC. 1993. Cytometrie tout terrain or bush DNA cytometry. In: Sablon A, ed. Flow cytometry, Jacquemin-NATO ASI Series, Vol. H67. Heidelberg: Springer-Verlag, 227–241.
Caspersson T, Schultz J. 1938. Nucleic acid metabolism of the chromosomes in relation to gene reproduction. Nature 142: 294.
Cavalier-Smith T. 1985.The evolution of genome size. Chichester: John Wiley & Sons.
Cowden RR, Curtis SK. 1981. Microfluorometeric investigations of chromatin structure. I. Evaluation of nine DNA-specific fluorochromes as probes of chromation organization. Histochemistry 72: 11–23. PubMed
Crissman HA, Steinkamp JA. 1973. Rapid simultaneous measurement of DNA, protein and cell volume in single cells from large mammalian cell populations. Journal of Cell Biology 59: 766–771. PubMed PMC
Deeley EM. 1955. An integrating micodensitometer for biological cells. Journal of Cell Instrumentation 32: 263–267.
De Latt AMM, Göhde W, Vogelzang MJD. 1987. Determination of ploidy of single plants and plant populations by flow cytometry. Plant Breeding 99: 303–307.
De Vita R, Cavallo D, Eleuteri P, Dellomo G. 1994. Evaluation of interspecific DNA content variation and sex identification in falconiformes and strigiformes by flow cytometric analysis. Cytometry 16: 346–350. PubMed
Dittrich W, Göhde W. 1969. Impulsfluorometrie bei Einzellen in Suspensionen. Zeitschrift für Naturforschung 24b: 360–361. PubMed
Doležel J. 1991. Flow cytometric analysis of nuclear DNA content in higher plants. Phytochemical Analysis 2: 143–154.
Doležel J, Bartoš J, Voglmayr H, Greilhuber J. 2003. Nuclear DNA content and genome size of trout and human. Cytometry 51: 127–128. PubMed
Doležel J, Binarová P, Lucretti S. 1989. Analysis of nuclear DNA content in plant cells by flow cytometry. Biologia Plantarum 31: 113–120.
Doležel J, Doleželová M, Novák FJ. 1994. Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biologia Plantarum 36: 351–357.
Doležel J, Göhde W. 1995. Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19: 103–106. PubMed
Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R. 1998. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Annals of Botany 82 (Suppl. A): 17–26.
Doležel J, Sgorbati S, Lucretti S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85: 625–631.
Dubelaar GBJ, Gerritzen PL. 2000. CytoBuoy: a step forward towards using flow cytometry in operational oceanography. Scientia Marina 64: 255–265.
Ellul P, Boscaiu M, Vicente O, Moreno V, Roselló JA. 2002. Intra- and interspecific variation in DNA content in Cistus (Cistaceae). Annals of Botany 90: 345–351. PubMed PMC
Emshwiller E. 2002. Ploidy levels among species in the ‘Oxalis tuberosa Alliance’ as inferred by flow cytometry. Annals of Botany 89:741–753. PubMed PMC
Feulgen R, Rossenbeck H. 1924. Mikroskopisch-chemischer Nachweis einer Nukleinsäure von Typus der Thymonucleinsäure und die darauf beruhende selektive Färbung von Zellkernen in mikroskopischen Präparaten. Zeitschrift für physikalische Chemie, Stöchiometrie und Verwandtschaftslehre 135: 203–248.
Galbraith DW. 1984. Flow cytometric analysis of the cell cycle in higher plants. In: Vasil, IK, ed. Cell culture and somatic cell genetics of plant. New York; Academic Press, 765–777.
Galbraith DW. 1990. Flow cytometric analysis of plant genomes. Methods in Cell Biology 33: 549–562. PubMed
Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049–1051. PubMed
Galbraith DW, Lambert GM, Macas J, Doležel J. 1998. Analysis of nuclear DNA content and ploidy in higher plants. In: Robinson, JP, Darzynkiewicz, Z, Dean, PN, Dressler, LG, Orfao, A, Rabinovitch, PS, Stewart, CC, Tanke, HJ, Wheeless, LL, eds. Current protocols in cytometry. New York: John Wiley & Sons, 7.6.1–7.6.22.
Galbraith DW, Shields BA. 1982. The effect of inhibitors of cell wall synthesis on tobacco protoplast development. Physiologia Plantarum 55: 25–30.
Giangare MC, Prosperi E, Pedralinov G, Bottiroli G. 1989. Flow cytometric evaluation of DNA stainability with propidium iodide after H1 extraction. Cytometry 10: 726–730. PubMed
Godelle B, Cartier D, Marie D, Brown SC, Siljak-Yakovlev S. 1993. Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition. Cytometry 14: 618–626. PubMed
Graham MJ, Nickell CD, Rayburn AL. 1994. Relationship between genome size and maturity group in soybean. Theoretical and Applied Genetics 88: 429–432. PubMed
Gregory TR. 2001. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews 76: 65–101. PubMed
Gregory TR. 2003. Is small indel bias a determinant of genome size? Trends in Genetics 19: 485–488. PubMed
Greilhuber J. 1988. ‘Self-tanning’—a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Systematics and Evolution 158: 87–96.
Greilhuber J. 1998. Intraspecific variation in genome size: a critical reassessment. Annals of Botany 82 (Suppl. A): 27–35.
Greilhuber J. 2005. Intraspecific variation in genome size in angiosperms: identifying its existence. Annals of Botany 95: 91–98. PubMed PMC
Greilhuber J, Doležel J, Lysák M, Bennett M.D. 2005. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Annals of Botany 95: 255–260. PubMed PMC
Greilhuber J, Obermayer R. 1997. Genome size and maturity group in Glycine max (soybean). Heredity 78: 547–551.
Hanson L, Brown RL, Boyd A, Johnson MAT, Bennett MD. 2003. First nuclear DNA C-values for 28 Angiosperm genera. Annals of Botany 91: 31–38. PubMed PMC
Heller FO. 1973. DNS-Bestimmung an Keimwurzeln von Vicia faba L. mit Hilfe der Impulscytophotometrie. Bericht der Deutschen Botanischen Gesellschaft 86: 437–441.
Holtfreter HB, Cohen N. 1990. Fixation-associated quantitative variation of DNA fluorescence observed in flow cytometric analysis of homopoietic cells from adult diploid frogs. Cytometry 11: 676–685. PubMed
Hülgenhof E, Weidhase RA, Schlegel R, Tewes A. 1988. Flow cytometric determination of DNA content in isolated nuclei of cereals. Genome 30: 565–569.
Kalendar R, Tanskanen J, Irnmonen S, Nevo E, Schulman AH. 2000. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences of the USA 97: 6603–6607. PubMed PMC
Kamaté K, Brown S, Durand P, Bureau JM, De Nay D, Trinh TH. 2001. Nuclear DNA content and base composition in 28 taxa of Musa Genome 44: 622–627. PubMed
Kamentsky LA, Melamed MR, Derman H. 1965. Spectrophotometer: new instrument for ultrarapid cell analysis. Science 150: 630–631. PubMed
Kawara S, Takata M, Takehara K. 1999. High frequency of DNA aneuploidy detected by DNA flow cytometry in Bowen's disease. Journal of Dermatological Science 21: 23–26. PubMed
Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ. 1999. Reference standards for determination of DNA content of plant nuclei. American Journal of Botany 86: 609–613. PubMed
Le Pecq JB, Paoletti G. 1967. A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. Journal of Molecular Biology 27: 87–106. PubMed
Le Thierrry d'Ennequin M, Panaud O, Brown S, Siljak-Yakovlev A, Sarr A. 1998. First evaluation of DNA content in Setaria genus by flow cytometry. Journal of Heredity 89: 556–559.
Lysák MA, Doleželová M, Horry JP, Swennen R, Doležel J. 1999. Flow cytometric analysis of nuclear DNA content in Musa Theoretical and Applied Genetics 98: 1344–1350.
Lysák MA, Rostková A, Dixon JM, Rossi G, Doležel J. 2000. Limited genome size variation in Sesleria albicans Annals of Botany 86: 399–403.
Marie D, Brown SC. 1993. A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biology of the Cell 78: 41–51. PubMed
Martel E, De Nay D, Siljak-Yakovlev S, Brown S, Sarr A. 1997. Genome size variation and basic chromosome number in pearl millet and fourteen related Pennisetum species. Journal of Heredity 88: 139–143.
Matzk F, Meister A, Schubert I. 2000. An efficient screen for reproductive pathways using mature seeds of monocot and dicots. The Plant Journal 21: 97–108. PubMed
Mefford H, vandenEngh G, Friedman C, Trask BJ. 1997. Analysis of variation in chromosome size among diverse human populations by bivariate flow karyotyping. Human Genetics 100: 138–144. PubMed
Michaelson MJ, Price HJ, Ellison JR, Johnston JS. 1991. Comparison of plant DNA contents determined by Feulgen microspectrophotometry and laser flow cytometry. American Journal of Botany 78: 183–188.
Michaelson MJ, Price HJ, Johnston JS, Ellison JR. 1991. Variation of nuclear DNA content in Helianthus annuus (Asteraceae). American Journal of Botany 78: 1238–1243.
Mirsky AE, Ris H. 1951. The desoxyribonucleic acid content of animal cells and its evolutionary significance. Journal of General Physiology 34: 451–462. PubMed PMC
Morgan ER, Burge GK, Seelye JF, Grant JE, Hopping ME. 1995. Interspecific hybridization between Limonium perigrinum Bergius and Limonium purpuratum L. Euphytica 83: 215–224.
Moscone EA, Baranyi M, Ebert I, Greilhuber J, Ehrendorfer F, Hunziker AT. 2003. Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry. Annals of Botany 92: 21–29. PubMed PMC
Noirot M, Barre P, Duperray C, Louarn J, Hamon S. 2003. Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in coffee tree. Annals of Botany 92: 259–264. PubMed PMC
Noirot M, Barre P, Louarn J, Duperray C, Hamon S. 2000. Nucleus–cytosol interactions: a source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Annals of Botany 86: 309–316.
Noirot M, Barre P, Louarn J, Duperray C, Hamon S. 2002. Consequences of stoichiometric error on nuclear DNA content evaluation in Coffea liberica var. dewevrei using DAPI and propidium iodide. Annals of Botany 89: 385–389. PubMed PMC
Obermayer R, Greilhuber J. 1999. Genome size in Chinese soybean accessions: stable or variable? Annals of Botany 84: 259–262.
Otto FJ. 1990. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Darzynkiewickz Z, Crissman HA, eds. Methods in cell biology, Vol. 33. San Diego: Academic Press, 105–110. PubMed
Overton WR, McCoy JP. 1994. Reversing the effect of formalin on the binding of propidium iodide to DNA. Cytometry 16: 351–356. PubMed
Petrov D. 1997. Slow but steady: reduction of genome size through biased mutation. The Plant Cell 9: 1900–1901. PubMed PMC
Pfosser M. 1989. Improved method for critical comparison of cell cycle data on asynchronously dividing and synchronized cell cultures of Nicotiana tabacum Journal of Plant Physiology 134: 741–745.
Pfosser M, Amon A, Lelley T, Heberle-Bors E. 1995. Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry 21: 387–393. PubMed
Portugal J, Waring MJ. 1988. Assignment of DNA binding sites for4′,6-diamidino-2-phenylindole and bisbenzimide (Hoechst 33258). A comparative footprinting study. Biochim. Biophys. Acta 949: 158–168. PubMed
Price HJ, Hodnet G, Johnston JS. 2000. Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Annals of Botany 86: 929–934.
Price HJ, Johnston JS. 1996. Influence of light on DNA content of Helinathus annuus Linnaeus. Proceedings of the National Academy of Sciences of the USA 93: 11264–11267. PubMed PMC
Price HJ, Morgan PW, Johnston JS. 1998. Environmentally correlated variation in 2C nuclear DNA content measurements in Helianthus annuus L. Annals of Botany 82 (Suppl. A): 95–98.
Prosperi E, Giangare MC, Bottiroli G. 1991. Nuclease induced DNA structural changes assessed by flow cytometry with the intercalating dye propidium iodide. Cytometry 12: 323–329. PubMed
Puite KJ, Ten Broeke WRR. 1983. DNA staining of fixed and non-fixed plant protoplasts for flow cytometry with Hoechst 33342. Plant Science Letters 32: 79–88.
Rabinovitch PS. 1994. DNA content histogram and cell-cycle analysis. In: Darzynkiewicz Z, Robinson JP, Crissman HA, eds. Methods in cell biology: flow cytometry, Vol. 41. San Diego: Academic Press, 263–296. PubMed
Rayburn AL, Auger JA, Benzinger ES, Hepburn AG. 1989. Detection of intraspecific DNA content variation in Zea mays L. by flow cytometry. Journal of Experimental Botany 40: 1179–1183.
Rayburn AL, Auger JA, McMurphy LM. 1992. Estimating percentage constitutive heterochromatin by flow cytometry. Experimental Cell Research 198: 175–178. PubMed
Rayburn AL, Biradar DP, Bullock DG, Nelson RL, Gourmet C, Wetzel JB. 1997. Nuclear DNA content diversity in Chinese soybean introductions. Annals of Botany 80: 321–325.
Ricroch A, Brown SC. 1997. DNA base composition of Allium genomes with different chromosome numbers. Gene 205: 255–260. PubMed
Rival A, Beule T, Barre P, Hamon S, Duval Y, Noirot M. 1997. Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis Jacq) tissue cultures and seed-derived plants. Plant Cell Reports 16: 884–887. PubMed
Roux N, Doležel J, Swennen R, Zapata-Arias FJ. 2001. Effectiveness of three micropropagation techniques to dissociate cytochimeras in Musa spp. Plant Cell, Tissue and Organ Culture 66: 189–197.
Roux N, Toloza A, Radecki Z, Zapata-Arias FJ, Doležel J. 2003. Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell Reports 21: 483–490. PubMed
Sandoval A, Hocker V, Verdeil JL. 2003. Flow cytometric analysis of the cell cycle in different coconut palm (Cocos nucifera L.) tissues cultured in vitro Plant Cell Reports 22: 25–31. PubMed
Schmidt G, Thannhauser SJ. 1945. A method for the determination of desoxyribonucleic acid, ribonucleic acid, and phosphoproteins in animal tissues. Journal of Biological Chemistry 161: 83–89. PubMed
Shapiro HM. 2003.Practical flow cytometry, 4th edn. New York: Wiley-Liss.
Sosik HM, Olson RJ. 2002. Phytoplankton and iron limitation of photosynthetic efficiency in the Southern Ocean during late summer. Deep Sea Research. Part I. Oceanographic Research Papers 49: 1195–1216.
Straus NA. 1971. Comparative DNA renaturation kinetics in amphibians. Proceedings of the National Academy of Sciences of the USA 68: 799–802. PubMed PMC
Suda J, Kyncl T, Freiová R. 2003. Nuclear DNA amounts in Macronesian angiosperms. Annals of Botany 92: 153–164. PubMed PMC
Swift H. 1950. The constancy of desoxyribose nucleic acid in plant nuclei. Proceedings of the National Academy of Sciences of the USA 36: 643–654. PubMed PMC
Taylor IW, Milthorpe BK. 1980. An evaluation of DNA fluorochromes, staining techniques, and analysis for flow cytometry. I. Unperturbed cell populations. Journal of Histochemistry and Cytochemistry 28: 1224–1232. PubMed
Thiem B, Sliwinska E. 2003. Flow cytometric analysis of nuclear DNA content in cloudberry (Rubus chamaemorus L.) in vitro cultures. Plant Science 164: 129–134.
Thomas CA. 1971. The genetic organisation of chromosomes. Annual Review of Genetics 5: 237–256. PubMed
Tiersch TR, Chandler RW, Wachtel SS, Elias S. 1989. Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry 10: 706–710. PubMed
Turpeinen T, Kulmala J, Nevo E. 1999. Genome size variation in Hordeum spontaneum populations. Genome 42: 1094–1099. PubMed
Ulrich I, Fritz B, Ulrich W. 1988. Application of DNA fluorochromes for flow cytometric DNA analysis of plant protoplast. Plant Science 55: 151–158.
Ulrich I, Ulrich W. 1991. High-resolution flow cytometry of nuclear DNA in higher plants. Protoplasma 165: 212–215.
Van Dilla MA, Trujillo TT, Mullaney PF, Coulter JR. 1969. Cell microfluorometry: a method for rapid fluorescence measurement. Science 163: 1213–1214. PubMed
Van Dyke MW, Dervan PB. 1983. Chromomycin, mithramycin, and olivomycin binding sites on heterogenous deoxyribonucleic acid. Footprinting with (methidiumpropyl-EDTA) iron(II). Biochemistry 22: 2373–2377. PubMed
Vermes I, Haanen C, Reutelingsperger C. 2000. Flow cytometry of apoptotic cell death. Journal of Immunological Methods 243:167–190. PubMed
Vilhar B, Greilhuber J, Dolenc Koce J, Temsch EM, Dermastia M. 2001. Plant genome size measurement with DNA image cytometry. Annals of Botany 87: 719–728.
Vindeløv LL, Christensen IJ, Jensen GJ, Nissen NI. 1983. Limits of detection of nuclear DNA abnormalities by flow cytometric DNA analysis. Results obtained by a set of methods for sample-storage, staining and interval standardization. Cytometry 3: 332–339. PubMed
Waring M. 1970. Variation of the supercoils in closed circular DNA by binding of antibiotics and drugs: evidence for molecular models involving intercalation. Journal of Molecular Biology 54: 247–279. PubMed
Wendel JF, Wessler S. 2000. Retrotransposon-mediated genome evolution on a local ecological scale. Proceedings of the National Academy of Sciences of the USA 97: 6250–6252. PubMed PMC
Yokoya K, Roberts AV, Mottley J, Lewis R, Brandham PE. 2000. Nuclear DNA amounts in roses. Annals of Botany 85: 557–561.
Zoldoš V, Papeš D, Brown SC, Panaud O, Šiljak-Yakovlev S. 1998. Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome 41: 162–168.
The Use of Flow Cytometry for Estimating Genome Sizes and DNA Ploidy Levels in Plants
Temporal stability of spatial cytotype structure in mixed-ploidy populations of Centaurea stoebe
Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants
Simple Field Storage of Fish Samples for Measurement of DNA Content by Flow Cytometry
One Major Challenge of Sequencing Large Plant Genomes Is to Know How Big They Really Are
New chromosome counts and genome size estimates for 28 species of Taraxacum sect. Taraxacum
A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History
Taming the wild: resolving the gene pools of non-model Arabidopsis lineages