Karyotype analysis of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) reveals a large X chromosome with rRNA and histone gene families

. 2011 Mar ; 139 (3) : 281-9. [epub] 20110219

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21336570

The Russsian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is a worldwide pest of cereals. Despite its economic importance, little is known about its genome. Here we investigated physical genomic features in RWA by karyotype analysis using differential staining with AgNO(3), CMA(3), and DAPI, by chromosomal localization of ribosomal DNA (rDNA), H3 and H4 histone genes, and the "arthropod" telomeric sequence (TTAGG)(n) using fluorescence in situ hybridization (FISH), and by measuring the RWA genome size using flow cytometry. The female karyotype, 2n = 10, is composed of four autosome pairs and a pair of X chromosomes, whereas the male karyotype, 2n = 9, has a single X. The X chromosome is the largest element in the karyotype. All three molecular markers used, i.e., 18S rRNA and both H3 and H4 probes are co-localized at one end of the X chromosome. The FISH probes revealed that the AgNO(3)-positive bridge between two prometaphase X chromosomes of females, which is believed to be responsible for the elimination of one X chromosome in aphid oocytes determined to undergo male development, contains clusters of both histone genes, in addition to an rDNA cluster. Interestingly, RWA lacks the (TTAGG)(n) telomeric sequence in its genome, in contrast to several previously investigated aphid species. Additionally, we compared female and male genome sizes. The female genome size is 2C = 0.86 pg, whereas the male genome size is 2C = 0.70 pg. The difference between the DNA content in the two genders suggests that the RWA X chromosome occupies about 35% of the female haploid genome (1C = 0.43 pg), which makes it one of the largest sex chromosomes in the animal kingdom.

Zobrazit více v PubMed

Hereditas. 2003;138(1):6-10 PubMed

Ann Bot. 2005 Jan;95(1):99-110 PubMed

Nucleic Acids Res. 1983 Feb 25;11(4):971-86 PubMed

Chromosome Res. 2007;15(3):371-82 PubMed

Chromosome Res. 1998 Jan;6(1):55-7 PubMed

Chromosoma. 1976 Nov 19;58(3):275-84 PubMed

Cell. 1990 Apr 6;61(1):61-72 PubMed

Genetics. 1992 Oct;132(2):529-44 PubMed

Insect Mol Biol. 2010 Aug;19(4):463-71 PubMed

Insect Mol Biol. 2000 Jun;9(3):341-7 PubMed

Science. 1995 Dec 8;270(5242):1601-7 PubMed

Chromosome Res. 1999;7(6):449-60 PubMed

Bioessays. 2008 Jan;30(1):25-37 PubMed

Comp Biochem Physiol. 1961 Apr;2:241-89 PubMed

Chromosome Res. 1998 Apr;6(3):167-75 PubMed

Insect Mol Biol. 1994 Aug;3(3):183-9 PubMed

Genetica. 2002 Jun;115(2):179-87 PubMed

Chromosome Res. 2005;13(2):145-56 PubMed

Chromosoma. 1989 Oct;98(4):295-300 PubMed

Chromosome Res. 1996 Jun;4(4):314-20 PubMed

Genome. 1999 Jun;42(3):381-6 PubMed

Chromosoma. 1999 Dec;108(7):436-42 PubMed

Genetica. 2000;108(2):197-202 PubMed

Chromosoma. 1999 Jul;108(3):173-80 PubMed

Insect Mol Biol. 2001 Feb;10(1):105-10 PubMed

Heredity (Edinb). 2008 Sep;101(3):228-38 PubMed

Genome. 2005 Dec;48(6):1083-92 PubMed

Genome. 2004 Feb;47(1):163-78 PubMed

Cell. 1976 Aug;8(4):471-8 PubMed

Mol Biol Evol. 2005 Mar;22(3):582-8 PubMed

Nucleic Acids Res. 1981 May 25;9(10):2281-95 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...