Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants

. 2022 Sep ; 101 (9) : 710-724. [epub] 20210818

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34405937

The estimation of nuclear DNA content has been by far the most popular application of flow cytometry in plants. Because flow cytometry measures relative fluorescence intensities of nuclei stained by a DNA fluorochrome, ploidy determination, and estimation of the nuclear DNA content in absolute units both require comparison to a reference standard of known DNA content. This implies that the quality of the results obtained depends on the standard selection and use. Internal standardization, when the nuclei of an unknown sample and the reference standard are isolated, stained, and measured simultaneously, is mandatory for precise measurements. As DNA peaks representing G1 /G0 nuclei of the sample and standard appear on the same histogram of fluorescence intensity, the quotient of their position on the fluorescence intensity axis provides the quotient of DNA amounts. For the estimation of DNA amounts in absolute units, a number of well-established standards are now available to cover the range of known plant genome sizes. Since there are different standards in use, the standard and the genome size assigned to it has always to be reported. When none of the established standards fits, the introduction of a new standard species is needed. For this purpose, the regression line approach or simultaneous analysis of the candidate standard with several established standards should be prioritized. Moreover, the newly selected standard organism has to fulfill a number of requirements: it should be easy to identify and maintain, taxonomically unambiguous, globally available, with known genome size stability, lacking problematic metabolites, suitable for isolation of sufficient amounts of nuclei, and enabling measurements with low coefficients of variation of DNA peaks, hence suitable for the preparation of high quality samples.

Zobrazit více v PubMed

Vrána J, Cápal P, Bednářová M, Doležel J. Flow cytometry in plant research: a success story. In: Nick P, Opatrný Z, editors. Applied plant cell biology. Heidelberg Springer‐Verlag: Plant Cell Monographs. Berlin; 2014.

Greilhuber J, Doležel J. 2C or not 2C: a closer look at cell nuclei and their DNA content. Chromosoma. 2009;118:391–400. PubMed

Greilhuber J, Doležel J, Lysák MA, Bennett MD. The origin, evolution and proposed stabilisation of the terms ‘genome size’ and ‘C‐value’ to describe nuclear DNA contents. Ann Bot. 2005;94:255–60. PubMed PMC

Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2:2233–44. PubMed

Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science. 1983;220:1049–51. PubMed

Loureiro J, Kron P, Temsch E, Koutecký P, Lopes S, Castro M, et al. Isolation of plant nuclei for estimation of nuclear DNA content: overview and best practices. Cytometry A. 2021;99:318–27. PubMed

Loureiro J, Rodriguez E, Doležel J, Santos C. Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot. 2006;98:515–27. PubMed PMC

Doležel J. Flow cytometric analysis of nuclear DNA content in higher plants. Phytochem Anal. 1991;2:143–54.

Sliwinska E, Loureiro J, Leitch I, Šmarda P, Bainard J, Bureš P, et al. Application‐based guidelines for best practices in plant flow cytometry. Cytometry A. 2021;XX:XX–X. PubMed

Doležel J, Bartoš J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot. 2005;95:99–110. PubMed PMC

Greilhuber J. Intraspecific variation in genome size: a critical reassessment. Ann Bot. 1998;82(Supplement A):27–35.

Greilhuber J, Temsch EM, Loureiro J. Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J, editors. Flow cytometry with plant cells. Analysis of genes, chromosomes, and genomes. Weinheim: Wiley‐VCH; 2007. p. 67–101.

Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant. 1992;85:625–31.

Baranyi M, Greilhuber J. Flow cytometric analysis of genome size variation in cultivated and wild Pisum sativum (Fabaceae). Plant Syst Evol. 1995;194:231–9.

Baranyi M, Greilhuber J. Flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum . Theor Appl Genet. 1996;92:297–307. PubMed

Greilhuber J, Ebert I. Genome size variation in Pisum sativum . Genome. 1994;37:646–55. PubMed

Kaeppler SM, Kaeppler HF, Rhee Y. Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol. 2000;43:179–88. PubMed

Loureiro J, Rodriguez E, Gomes A, Santos C. Genome size estimations on Ulmus minor mill., Ulmus glabra Huds. and Celtis australis L., using flow cytometry. Plant Biol. 2007;9:541–4. PubMed

Bennett MD, Price HJ, Johnston JS. Anthocyanin inhibits propidium iodide DNA fluorescence in Euoporbia pulcherrima: implications for genome size variation in flow cytometry. Ann Bot. 2008;101:777–90. PubMed PMC

Noirot M, Barre P, Duperray C, Hamon S, de Kochko A. Investigation on the causes of stoichiometric error in genome size estimation using heat experiments: consequences on data interpretation. Ann Bot. 2005;95:111–8. PubMed PMC

Loureiro J, Rodriguez E, Doležel J, Santos C. Two new nuclear isolation buffers for plant DNA flow cytometry ‐ a test with 37 species. Ann Bot. 2007;100:875–88. PubMed PMC

Price HJ, Hodnett G, Johnston JS. Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot. 2000;86:929–34.

Price HJ, Bachmann K, Chambers KL, Riggs J. Detection of intraspecific variation in nuclear DNA content in Microseris douglasii . Bot Gaz. 1980;141:195–8.

Bainard J, Husband B, Baldwin S, Fazekas A, Gregory T, Newmaster S, et al. The effects of rapid desiccation on estimates of plant genome size. Chromosom Res. 2011;19:825–42. PubMed

Darzynkiewicz Z. Critical aspects in analysis of cellular DNA content. Curr Protoc Cytom. 2010;7. 10.1002/0471142956.cy0702s52. PubMed DOI PMC

Holtfreter H, Cohen N. Fixation‐associated quantitative variations of DNA fluorescence observed in flow cytometric analysis of hemopoietic cells from adult diploid frogs. Cytometry. 1990;11:676–85. PubMed

Greilhuber J, Volleth M, Loidl J. Genome size of man and animals relative to the plant Allium cepa . Can J Genet Cytol. 1983;25:554–60. PubMed

Doležel J, Göhde W. Sex determination in dioecious plants Melandrium album and M. rubrum using high‐resolution flow cytometry. Cytometry. 1995;19:103–6. PubMed

Temsch EM, Greilhuber J, Krisai R. Genome size in liverworts. Preslia. 2010;82:63–80.

Schween G, Gorr G, Hohe A, Reski R. Unique tissue‐specific cell cycle in Physcomitrella . Plant Biol. 2003;5:1–9.

Čertnerová D, Galbraith D. Best practices in the flow cytometry of microalgae. Cytometry A. 2021;99:359–64. PubMed

Bainard JD, Henry TA, Bainard LD, Newmaster SG. DNA content variation in monilophytes and lycophytes: large genomes that are not endopolyploid. Chromosom Res. 2011;19:763–75. PubMed

Bainard JD, Newmaster SG. Endopolyploidy in bryophytes: widespread in mosses and absent in liverworts. J Bot. 2010;2010:7.

Barow M. Endopolyploidy in seed plants. BioEssays. 2006;28:271–81. PubMed

Barow M, Meister A. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ. 2003;26:571–84.

Sliwinska E. Flow cytometry – a modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Hortic. 2018;30:103–28.

Galbraith D. Endoreduplicative standards for calibration of flow cytometric C‐value measurements. Cytometry A. 2014;85A:368–74. PubMed

Galbraith DW. Simultaneous flow cytometric quantification of plant nuclear DNA contents over the full range of described angiosperm 2C values. Cytometry A. 2009;75A:692–8. PubMed

Hřibová E, Holušová K, Trávníček P, Petrovská B, Ponert J, Šimková H, et al. The enigma of progressively partial endoreplication: new insights provided by flow cytometry and next‐generation sequencing. Genome Biol Evol. 2016;8:1996–2005. PubMed PMC

Maluszynska J, Kolano B, Sas‐Nowosielska H. Endopolyploidy in plants. In: Leitch L, Greilhuber J, Doležel J, Wendel J, editors. Plant genome diversity. Volume physical structure, behaviour and evolution of plant genomes. Wien: Springer Verlag; 2013. p. 99–119.

Zonneveld B. Selected perennial plants do provide convenient standards for the determination of genome sizes with flow cytometry. Plant Syst Evol. 2021;307:28.

Suda J, Leitch IJ. The quest for suitable reference standards in genome size research. Cytometry A. 2010;77A:717–20. PubMed

Bagwell CB, Baker D, Whetstone S, Munson M, Hitschcox S, Ault KA, et al. A simple and rapid method for determining the linearity of a flow cytometer amplification system. Cytometry. 1989;10:689–94. PubMed

Fleischmann A, Michael T, Rivadavia F, Sousa A, Wang W, Temsch EM, et al. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann Bot. 2014;114:1651–63. PubMed PMC

Pellicer J, Fay MF, Leitch IJ. The largest eukaryotic genome of them all? Bot J Linn Soc. 2010;164:10–5.

Šmarda P, Bureš P, Horová L, Leitch I, Mucina L, Pacini E, et al. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc Natl Acad Sci U S A. 2014;111:E4096–102. PubMed PMC

Veselý P, Bureš P, Šmarda P. Nutrient reserves may allow for genome size increase: evidence from comparison of geophytes and their sister non‐geophytic relatives. Ann Bot. 2013;112:1193–200. PubMed PMC

Veselý P, Bureš P, Šmarda P, Pavlíček T. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Ann Bot. 2012;109:65–75. PubMed PMC

Vilhar B, Greilhuber J, Dolenc‐Koce J, Temsch EM, Dermastia M. Plant genome size measurement with DNA image cytometry. Ann Bot. 2001;87:719–28.

Yokoya K, Roberts AV, Mottley J, Lewis R, Brandham PE. Nuclear DNA amounts in roses. Ann Bot. 2000;85:557–61.

Vindeløv L, Christensen I, Jensen G, Nissen N. Limits of detection of nuclear DNA abnormalities by flow cytometric DNA analysis. Results obtained by a set of methods for sample‐storage, staining and internal standardization. Cytometry A. 1983;3:332–9. PubMed

Vindeløv L, Christensen I, Nissen N. Standardization of high‐resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout red blood cells as internal reference standards. Cytometry A. 1983;3:328–31. PubMed

Vendrely R, Vendrely C. La teneur du noyau cellulaire en acide désoxyribonucléique à travers les organes, les individus et les espèces animals. Experientia. 1948;4:434–6. PubMed

Vendrely R, Vendrely C. La teneur du noyau cellulaire en acide désoxyribonucléique à travers les organes, les individus et les espèces animals. Experientia. 1949;5:327–9. PubMed

Dische Z. Über einige neue charakteristische Farbreaktionen der Thymonukleinsäure und eine Mikromethode zur Bestimmung derselben in tierischen Organen mit Hilfe dieser Reaktionen. Mikrochemie. 1930;8:4–32.

Tiersch TR, Chandler RW, Wachtel SS, Elias S. Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry. 1989;10:706–10. PubMed

Van't Hof J. Relationships between mitotic cycle duration, S‐period duration and the average rate of DNA synthesis in the root meristem cells of several plants. Exp Cell Res. 1965;39:48–58. PubMed

Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Mol Biol Report. 1991;9:208–18.

Ulrich I, Fritz B, Ulrich W. Application of DNA fluorochromes for flow cytometric DNA analysis of plant protoplasts. Plant Sci. 1988;55:151–8.

Bennett MD, Johnston S, Hodnett GL, Price HJ. Allium cepa L cultivars from four continents compared by flow cytometry show nuclear DNA constancy. Ann Bot. 2000;85:351–7.

Finkers R, van Kaauwen M, Ament K, Burger‐Meijer K, Egging R, Huits H, Kodde L, Kroon L, Shigyo M, Sato S and et al. Insights from the first genome assembly of onion (Allium cepa). bioRxiv 2021. PubMed PMC

Doležel J, Greilhuber J. Nuclear genome size: are we getting closer? Cytometry A. 2010;19:103–6. PubMed

Leitch I, Johnston E, Pellicer J, Hidalgo O, Bennett M. Plant DNA C‐values Database. 2019. PubMed

Initiative AG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature. 2000;408:796–815. PubMed

Doležel J, Bartoš J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry A. 2003;51A:127–8. PubMed

Consortium TCeS . Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998;282:2012–8. PubMed

Bennett MD, Leitch IJ, Price HJ, Johnston JS. Comparisons with Caenorhabditis (~100 Mb) and Drosophila (~175 Mb) using flow cytometry show genome size in Arabidopsis to be ~157 Mb and thus ~25% larger than the Arabidopsis genome Initiative estimate of ~125 Mb. Ann Bot. 2003;91:547–57. PubMed PMC

Doležel J, Čížková J, Šimková H, Bartoš J. One major challenge of sequencing large plant genomes is to know how big they really are. Int J Mol Sci. 2018;19:3554. PubMed PMC

Project IRGS. The map‐based sequence of the rice genome. Nature. 2005;436:793–800. PubMed

Meister A. Calculation of binding length of base‐specific DNA dyes by comparison of sequence and flow cytometric data. Application to Oryza sativa and Arabidopsis thaliana . J Theor Biol. 2005;232:93–7. PubMed

Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, et al. Plant genome size estimation by flow cytometry: inter‐laboratory comparison. Ann Bot. 1998;82:17–26.

Bennett MD, Smith JB. Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond Ser B Biol Sci. 1976;274:227–74. PubMed

Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ. Reference standards for determination of DNA content of plant nuclei. Am J Bot. 1999;86:609–13. PubMed

Praça‐Fontes MM, Carvalho CR, Clarindo WR, Cruz CD. Revisiting the DNA C‐values of the genome size‐standards used in plant flow cytometry to choose the "best primary standards". Plant Cell Rep. 2011;30:1183–91. PubMed

Doležel J, Doleželová M, Novák F. Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant. 1994;36:351–7.

Martin S, Sauder C, James T, Cheung K, Razeq F, Kron P, et al. Sexual hybridization between Capsella bursa‐pastoris (L.) Medik (♀) and Camelina sativa (L.) Crantz (♂) (Brassicaceae). Plant Breed. 2015;134:212–20.

Shapiro HS. Distribution of purines and pyrimidines in deoxyribonucleic acids. In: Fasman G, editor. Handbook of biochemistry and molecular biology. Volume 2. Cleveland: CRC press; 1976. p. 241–81.

Veleba A, Šmarda P, Zedek F, Horová L, Šmerda J, Bureš P. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Ann Bot. 2017;119:409–16. PubMed PMC

Marie D, Brown SC. A cytometric exercise in plant DNA histograms, with 2C‐values for 70 species. Biol Cell. 1993;78:41–51. PubMed

Schönswetter P, Suda J, Popp M, Weiss‐Schneeweiss H, Brochmann C. Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogenet Evol. 2007;42:92–103. PubMed

Bennett MD, Leitch IJ. Nuclear DNA amounts in angiosperms. Ann Bot. 1995;76:113–76.

Lysák MA, Doležel J. Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia. 1998;51:123–32.

Tuna M, Vogel KP, Arumuganathan K, Gill KS. DNA content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Sci. 2001;41:1629–34.

Zonneveld BJM, Van Iren F. Flow cytometric analysis of DNA content in Hosta reveals ploidy chimeras. Euphytica. 2000;111:105–10.

Hornych O, Ekrt L, Riedel F, Koutecký P, Košnar J. Asymmetric hybridization in central European populations of the Dryopteris carthusiana group. Am J Bot. 2019;106:1477–86. PubMed

Barow M, Meister A. Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry. 2002;47:1–7. PubMed

Vogel KP, Arumuganathan K, Jensen KB. Nuclear DNA content of perennial grasses of the Triticeae. Crop Sci. 1999;39:661–7.

Bennett MD, Leitch IJ. Nuclear DNA amounts in angiosperms ‐ 583 new estimates. Ann Bot. 1997;80:169–96. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...