Best practices in the flow cytometry of microalgae
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33611833
DOI
10.1002/cyto.a.24328
Knihovny.cz E-zdroje
- Klíčová slova
- algal FCM standards, best practices, flow cytometry, genome size, microalgae, nuclear isolation,
- MeSH
- biomasa MeSH
- biotechnologie MeSH
- délka genomu MeSH
- ekosystém MeSH
- mikrořasy * MeSH
- průtoková cytometrie MeSH
- Publikační typ
- časopisecké články MeSH
Microalgae are photosynthetic microorganisms with a major influence on global ecosystems. Further, owing to the production of various secondary metabolites, microalgae are also intensively studied for their enormous potential in biotechnology and its applications. While flow cytometry (FCM) is a fast and reliable method particularly suitable for genome size estimation in plant and animal studies, its application to microalgae often comes with many methodological challenges due to specific issues (e.g., cell wall composition, and presence of various secondary metabolites). Sample preparation requires considerable amounts of biomass, chemical fixation, and/or extraction of cellular components. In genome size estimation, appropriate methods for isolation of intact nuclei (using lysis buffers, razor-blade chopping, various enzymes, or bead-beating of cells) are essential for successful and high-quality analyses. Nuclear DNA amounts of microalgae diverge greatly, varying by almost 30,000-fold (0.01 to 286 pg). Even though new algal reference standards for genome size are now being introduced, animal red blood cells and nuclei from plant tissues are still predominantly used. Due to our limited knowledge of microalgal life cycles, particular caution should be taken during 1C/2C-value (or ploidy level) assignments.
Zobrazit více v PubMed
Simon N, Barlow RG, Marie D, Partensky F, Vaulot D. Characterization of oceanic photosynthetic picoeukaryotes by flow cytometry. J Phycol. 1994;30:922-35.
Veldhuis MJW, Cucci TL, Sieracki ME. Cellular DNA content of marine phytoplankton using two new Fluorochromes: taxonomic and ecological implications. J Phycol. 1997;33:527-41.
Kapraun DF. Nuclear DNA content estimates in Green algal lineages: Chlorophyta and Streptophyta. Ann Bot. 2007;99:677-701.
Mazalová P, Šarhanová P, Ondřej V, Poulíčková A. Quantification of DNA content in freshwater microalgae using flow cytometry: a modified protocol for selected green microalgae. Fottea. 2011;11:317-28.
Reed DC, Brzezinski MA, Coury DA, Graham WM, Petty RL. Neutral lipids in macroalgal spores and their role in swimming. Mar Biol. 1999;133:737-44.
LeGall Y, Brown S, Marie D, Mejjad M, Kloareg B. Quantification of nuclear DNA and G-C content in marine macroalgae by flow cytometry of isolated nuclei. Protoplasma. 1993;173:123-32.
Peters AF, Marie D, Scornet D, Kloareg B, Mark Cock J. Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics. J Phycol. 2004;40:1079-88.
Whiteley AS, Burkill PH, Sleigh MA. Rapid method for cell cycle analysis in a predatory marine dinoflagellate. Cytometry. 1993;14:909-15.
Parrow MW, Burkholder JAM. Flow cytometric determination of zoospore DNA content and population DNA distribution in cultured Pfiesteria spp. (Pyrrhophyta). J Exp Mar Biol Ecol. 2002;267:35-51.
Lin S, Mulholland MR, Zhang H, Feinstein TN, Jochem FJ, Carpenter EJ. Intense grazing and prey-dependent growth of Pfiesteria piscicida (Dinophyceae). J Phycol. 2004;40:1062-73.
Poulíčková A, Mazalová P, Vašut RJ, Šarhanová P, Neustupa J, Škaloud P. DNA content variation and its significance in the evolution of the genus Micrasterias (desmidiales, streptophyta). PLoS One. 2014;9:e86247.
Shen Y, Yuan W, Pei Z, Mao E. Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol. 2010;160:1674-84.
Přibyl P, Cepák V, Zachleder V. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol. 2012;94:549-61.
Lemaire S, Hours M, Gerard-Hirne C, Trouabal A, Roche O, Jacquot J-P. Analysis of light/dark synchronization of cell-wall-less Chlamydomonas reinhardtii (Chlorophyta) cells by flow cytometry. Eur J Phycol. 1999;34:279-86.
Connolly JA, Oliver MJ, Beaulieu JM, Knight CA, Tomanek L, Moline MA. Correlated evolution of genome size and cell volume in diatoms (Bacillariophyceae). J Phycol. 2008;44:124-31.
Olefeld JL, Majda S, Albach DC, Marks S, Boenigk J. Genome size of chrysophytes varies with cell size and nutritional mode. Org Divers Evol. 2018;18:163-73.
Vaulot D, Birrien J-L, Marie D, Casotti R, Veldhuis MJW, Kraay GW, et al. Morphology, ploidy, pigment composition, and genome size of cultured strains of Phaeocystis (Prymnesiophyceae). J Phycol. 1994;30:1022-35.
von Dassow P, Petersen TW, Chepurnov VA, Armbrust E. Inter- and intraspecific relationships between nuclear DNA content and cell size in selected membersof the centric diatom genus Thalassiosira (Bacillariophyceae). J Phycol. 2008;44:335-49.
Almeida AC, Gomes T, Habuda-Stanić M, Lomba JAB, Romić Ž, Turkalj JV, et al. Characterization of multiple biomarker responses using flow cytometry to improve environmental hazard assessment with the green microalgae Raphidocelis subcapitata. Sci Total Environ. 2019;687:827-38.
Mann DG, Stickle AJ. The genus Craticula. Diatom Res. 1991;6:79-107.
LaJeunesse TC, Lambert G, Andersen RA, Coffroth MA, Galbraith DW. Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates1. J Phycol. 2005;41:880-6.
Figueroa RI, Garcés E, Bravo I. The use of flow cytometry for species identification and life-cycle studies in dinoflagellates. Deep Res Part II Top Stud Oceanogra. 2010;57:301-7.
Whittaker KA, Rignanese DR, Olson RJ, Rynearson TA. Molecular subdivision of the marine diatom Thalassiosira rotula in relation to geographic distribution, genome size, and physiology. BMC Evol Biol. 2012;12:209.
Hong HH, Lee HG, Jo J, Kim HM, Kim SM, Park JY, et al. The exceptionally large genome of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae): determination by flow cytometry. Algae. 2016;31:373-8.
Vives-Rego J, Lebaron P, Nebe-von Caron G. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev. 2000;24:429-48.
Tang YZ, Dobbs FC. Green autofluorescence in dinoflagellates, diatoms, and other microalgae and its implications for vital staining and morphological studies. Appl Environ Microbiol. 2007;73:2306-13.
Salgado P, Figueroa RI, Ramilo I, Bravo I. The life history of the toxic marine dinoflagellate Protoceratium reticulatum (Gonyaulacales) in culture. Harmful Algae. 2017;68:67-81.
Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2:2233-44.
Čertnerová D, Škaloud P. Substantial intraspecific genome size variation in golden-brown algae and its phenotypic consequences. Ann Bot. 2020;126:1077-87.
Rengefors K, Gollnisch R, Sassenhagen I, Härnström Aloisi K, Svensson M, Lebret K, et al. Genome-wide SNP markers reveal population structure and dispersal direction of an expanding nuisance algal bloom species. Mol Ecol. 2021. https://doi.org/10.1111/mec.15787.
Weiss TL, Johnston JS, Fujisawa K, Okada S, Devarenne TP. Genome size and phylogenetic analysis of the a and L races of Botryococcus braunii. J Appl Phycol. 2011;23:833-9.
Jazwinski MS. Preparation of extracts from yeast. Methods Enzymol. 1990;182:154-74.
Doležel J, Greilhuber J, Suda J. Flow cytometry with plant cells. Wiley-VCH Verlag GmbH: Weinheim; 2007 479 p.
Potter EE, Thornber CS, Swanson JD, McFarland M. Ploidy distribution of the harmful bloom forming macroalgae Ulva spp. in Narragansett Bay, Rhode Island, USA, using flow Cytometry methods. PLoS One. 2016;11:1-15.
Loureiro J, Kron P, Temsch EM, Koutecký P, Lopes S, Castro M, et al. Isolation of plant nuclei for estimation of nuclear DNA content - overview and best practices. Cytom Part A. in review.
Nakamura D, Tiersch TR, Douglass M, Chandler RW. Rapid identification of sex in birds by flow cytometry. Cytogenet Genome Res. 1990;53:201-5.
Hardie DC, Gregory TR, Hebert PDN. From pixels to picograms: a beginners' guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem. 2002;50:735-49.
Gerashchenko BI, Kosaka T, Hosoya H. Growth kinetics of algal populations exsymbiotic from Paramecium bursaria by flow cytometry measurements. Cytometry. 2001;44:257-63.
Kwok ACM, Wong JTY. Cellulose synthesis is coupled to cell cycle progression at G1 in the dinoflagellate Crypthecodinium cohnii. Plant Physiol. 2003;131:1681-91.
Kagami Y, Fujishita M, Matsuyama-Serisawa K, Yamamoto M, Kuwano K, Saga N, et al. DNA content of Ulva compressa (Ulvales, Chlorophyta) nuclei determined with laser scanning cytometry. Phycol Res. 2005;53:77-83.
Cid A, Fidalgo P, Herrero C, Abalde J. Toxic action of copper on the membrane system of a marine diatom measured by flow cytometry. Cytometry. 1996;25:32-6.
Brussaard C, Marie D, Thyrhaug R, Bratbak G. Flow cytometric analysis of phytoplankton viability following viral infection. Aquat Microb Ecol. 2001;26:157-66.
Carre IA, Edmunds LN Jr. Oscillator control of cell division in Euglena: cyclic AMP oscillations mediate the phasing of the cell division cycle by the circadian clock. J Cell Sci. 1993;104:1163-73.
Houdan A, Bonnard A, Fresnel J, Fouchard S, Billard C, Probert I. Toxicity of coastal coccolithophores (Prymnesiophyceae, Haptophyta). J Plankton Res. 2004;26:875-83.
Kremp A, Parrow MW. Evidence for asexual resting cysts in the life cycle of the marine peridinoid dinoflagellate, Scrippsiella hangoei. J Phycol. 2006;42:400-9.
Van Dolah FM, Leighfield TA, Kamykowski D, Kirkpatrick GJ. Cell cycle behavior of laboratory and field populations of the Florida red tide dinoflagellate, Karenia brevis. Cont Shelf Res. 2008;28:11-23.
Koester JA, Swalwell JE, Von Dassow P, Armbrust EV. Genome size differentiates co-occurring populations of the planktonic diatom Ditylum brightwellii (Bacillariophyta). BMC Evol Biol. 2010;10:1-11.
Kapraun DF. Nuclear DNA content estimates in multicellular Green, red and Brown algae: phylogenetic considerations. Ann Bot. 2005;95:7-44.
Temsch EM, Greilhuber J, Krisai R. Genome size in liverworts. Preslia. 2010;82:63-80.
Pfiester LA, Anderson DM. Dinoflagellate reproduction. In: Taylor FJR, editor. Biol. Dinoflag. Oxford: Blackwell; 1987. p. 611-48.
Coats DW. Dinoflagellate life-cycle complexities. J Phycol. 2002;38:417-9.
Fukuda Y, Endoh H. New details from the complete life cycle of the red-tide dinoflagellate Noctiluca scintillans (Ehrenberg) McCartney. Eur J Protistol. 2006;42:209-19.
Haig D. What do we know about charophyte (Streptophyte) life cycles? J Phycol. 2010;46:860-7.
Han M, Wang R, Ding N, Liu X, Zheng N, Fu B, et al. Reactive oxygen species-mediated caspase-3 pathway involved in cell apoptosis of Karenia mikimotoi induced by linoleic acid. Algal Res. 2018;36:48-56.
Medlin LK, Barker GLA, Campbell L, Green JC, Hayes PK, Marie D, et al. Genetic characterisation of Emiliania huxleyi (Haptophyta). J Mar Syst. 1996;9:13-31.
Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature. 2013;499:209-13.
Hamada J, Saito M, Ishida M. Nuclear phase in vegetative and gamete cells of Closterium ehrenbergii: fluorescence microspectrophotometry of DNA content. Annu reports Res React Institut. 1985;18:56-61.
Hoshaw RW, Wang J-C, McCourt RM, Hull HM. Ploidal changes in clonal cultures of Spirogyra communis and implications for species definition. Am J Bot. 1985;72:1005-11.
Loper CL, Steidinger KA, Walker LM. A simple chromosome spread technique for unarmored dinoflagellates and implications of polyploidy in algal cultures. Trans Am Microsc Soc. 1980;99:343.
Holt JR, Pfiester LA. A technique for counting chromosomes of armored dinoflagellates, and chromosome numbers of six freshwater dinoflagellate species. Am J Bot. 1982;69:1165-8.
Quijano-scheggia S, Garce E, Andree K, Fortun JM. Homothallic auxosporulation in Pseudo-nitzschia brasiliana (Bacillariophyta). J Phycol. 2009;45:100-7.
Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants