Application-based guidelines for best practices in plant flow cytometry
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
34585818
DOI
10.1002/cyto.a.24499
Knihovny.cz E-zdroje
- Klíčová slova
- DNA base composition, DNA content, cell cycle, endoreduplication, flow cytometric seed screening, genome size, in vitro cultures, intraspecific variation, ploidy,
- MeSH
- délka genomu MeSH
- DNA rostlinná genetika MeSH
- genom rostlinný MeSH
- ploidie * MeSH
- průtoková cytometrie metody MeSH
- rostliny * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA rostlinná MeSH
Flow cytometry (FCM) is currently the most widely-used method to establish nuclear DNA content in plants. Since simple, 1-3-parameter, flow cytometers, which are sufficient for most plant applications, are commercially available at a reasonable price, the number of laboratories equipped with these instruments, and consequently new FCM users, has greatly increased over the last decade. This paper meets an urgent need for comprehensive recommendations for best practices in FCM for different plant science applications. We discuss advantages and limitations of establishing plant ploidy, genome size, DNA base composition, cell cycle activity, and level of endoreduplication. Applications of such measurements in plant systematics, ecology, molecular biology research, reproduction biology, tissue cultures, plant breeding, and seed sciences are described. Advice is included on how to obtain accurate and reliable results, as well as how to manage troubleshooting that may occur during sample preparation, cytometric measurements, and data handling. Each section is followed by best practice recommendations; tips as to what specific information should be provided in FCM papers are also provided.
Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
Czech Academy of Sciences Institute of Botany Průhonice Czech Republic
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Kew Science Directorate Royal Botanic Gardens Kew Richmond Surrey UK
Zobrazit více v PubMed
Sliwinska E. Flow cytometry - a modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Horticulturae. 2018;30:103-28.
Keeler K, Kwankin B, Barnes P, Galbraith D. Polyploid polymorphism in Andropogon gerardii Vitman (Poaceae). Genome. 2011;29:374-9.
Hanušová K, Čertner M, Urfus T, Koutecký P, Košnar J, Rothfels CJ, et al. Widespread co-occurrence of multiple ploidy levels in fragile ferns (Cystopteris fragilis complex; Cystopteridaceae) probably stems from similar ecology of cytotypes, their efficient dispersal and inter-ploidy hybridization. Ann Bot. 2019;123:845-55.
Chumová Z, Krejčíková J, Mandáková T, Suda J, Trávníček P. Evolutionary and taxonomic implications of variation in nuclear genome size: lesson from the grass genus Anthoxanthum (Poaceae). PLoS ONE. 2015;10:e0133748.
Zozomová-Lihová J, Malánová-Krásná I, Vít P, Urfus T, Senko D, Svitok M, et al. Cytotype distribution patterns, ecological differentiation, and genetic structure in a diploid-tetraploid contact zone of Cardamine Amara. Am J Bot. 2015;102:1380-95.
Sabara HA, Kron P, Husband BC. Cytotype coexistence leads to triploid hybrid production in a diploid-tetraploid contact zone of Chamerion angustifolium (Onagraceae). Am J Bot. 2013;100:962-70.
Castro M, Castro S, Figueiredo A, Husband B, Loureiro J. Complex cytogeographical patterns reveal a dynamic tetraploid-octoploid contact zone. AoB PLANTS. 2018;10:ply012.
Čertner M, Fenclová E, Kúr P, Kolář F, Koutecký P, Krahulcová A, et al. Evolutionary dynamics of mixed-ploidy populations in an annual herb: dispersal, local persistence and recurrent origins of polyploids. Ann Bot. 2017;120:303-15.
Krejčíková J, Sudová R, Lučanová M, Trávníček P, Urfus T, Vít P, et al. High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of oxalis in the greater cape floristic region. Ann Bot. 2013;111:641-9.
Trávníček P, Jersáková J, Kubátová B, Krejčíková J, Bateman RM, Lučanová M, et al. Minority cytotypes in European populations of the Gymnadenia conopsea complex (Orchidaceae) greatly increase intraspecific and intrapopulation diversity. Ann Bot. 2012;110:977-86.
Vít P, Douda J, Krak K, Havrdová A, Mandák B. Two new polyploid species closely related to Alnus glutinosa in Europe and North Africa - an analysis based on morphometry, karyology, flow cytometry and microsatellites. Taxon. 2017;66:567-83.
Koutecký P, Štěpánek J, Baďurová T. Differentiation between diploid and tetraploid Centaurea phrygia: mating barriers, morphology and geographic distribution Preslia. 2012;84:1-32.
Prančl J, Koutecký P, Trávníček P, Jarolímová V, Lučanová M, Koutecká E, et al. Cytotype variation, cryptic diversity and hybridization in ranunculus sect. Batrachium revealed by flow cytometry and chromosome numbers. Preslia. 2018;90:195-223.
Te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot. 2012;109:19-45.
Nagy DU, Stranczinger S, Godi A, Weisz A, Rosche C, Suda J, et al. Does higher ploidy level increase the risk of invasion? A case study with two geo-cytotypes of Solidago gigantea Aiton (Asteraceae). J Plant Ecol. 2018;11:317-27.
Pandit MK, White SM, Pocock MJO. The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol. 2014;203:697-703.
Čertner M, Sudová R, Weiser M, Suda J, Kolář F. Ploidy-altered phenotype interacts with local environment and may enhance polyploid establishment in Knautia serpentinicola (Caprifoliaceae). New Phytol. 2019;221:1117-27.
Rey PJ, Manzaneda AJ, Alcántara JM. The interplay between aridity and competition determines colonization ability, exclusion and ecological segregation in the heteroploid Brachypodium distachyon species complex. New Phytol. 2017;215:85-96.
Pavlíková Z, Holá D, Vlasáková B, Procházka T, Münzbergová Z. Physiological and fitness differences between cytotypes vary with stress in a grassland perennial herb. PLoS ONE. 2017;12:e0188795.
Maherali H, Walden AE, Husband BC. Genome duplication and the evolution of physiological responses to water stress. New Phytol. 2009;184:721-31.
Šmarda P, Knápek O, Březinová A, Horová L, Grulich V, Danihelka J, et al. Genome sizes and genomic guanine+cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia. 2019;91:117-42.
Čertner M, Lučanová M, Sliwinska E, Kolář F, Loureiro J. Plant material selection, collection, preservation and storage for nuclear DNA content estimation. Cytometry Part A. 2021. https://doi.org/10.1002/cyto.a.24482
Lipnerová I, Bureš P, Horová L, Šmarda P. Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition. Ann Bot. 2013;111:79-94.
Suda J, Krahulcová A, Trávníček P, Krahulec F. Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon. 2006;55:447-50.
Johnson PG, Riordan TP, Arumuganathan K. Ploidy level determinations in Buffalograss clones and populations. Crop Sci. 1998;38:478-82.
Galbraith DW. Simultaneous flow cytometric quantification of plant nuclear DNA contents over the full range of described angiosperm 2C values. Cytometry A. 2009;75A:692-8.
Bharathan G, Lambert G, Galbraith DW. Nuclear DNA content of monocotyledons and related taxa. Am J Bot. 1994;81:381-6.
Temsch EM, Koutecký P, Urfus T, Šmarda P, Doležel J. Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants. Cytometry Part A. 2021;99. https://doi.org/10.1002/cyto.a.24495
Galbraith DW, Lambert GM, Macas J, Doležel J. Analysis of nuclear DNA content and ploidy in higher plants. Curr Protoc Cytom. 1997;2:7.6.1-7.6.22.
Sliwinska E, Jansen R. Estimation of the share of components of different ploidy in anisoploid sugar beet (Beta vulgaris L.) populations by flow cytometry. J Appl Genet. 1997;38:151-60.
Trávníček P, Eliášová A, Suda J. The distribution of cytotypes of Vicia cracca in Central Europe: the changes that have occurred over the last four decades. Preslia. 2010;82:149-63.
Suda J, Trávníček P. Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry - new prospects for plant research. Cytometry A. 2006;69A:273-80.
Suda J, Kron P, Husband BC, Trávnícek P. Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Doležel J, Greilhuber J, Suda J, editors. Flow cytometry with plants cells. Weinheim: Wiley-VCH; 2007. p. 103-30.
Leitch IJ, Bennett MD. Genome downsizing in polyploid plants. Biol J Linn Soc. 2004;82:651-63.
Šmarda P, Bureš P, Horová L, Foggi B, Rossi G. Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot. 2008;101:421-33.
Temsch EM, Greilhuber J. Genome size in Dipsacaceae and Morina longifolia (Morinaceae). Plant Sys Evol. 2010;289:45-56.
Chumová Z, Mandáková T, Trávníček P. Are B-chromosomes responsible for the extraordinary genome size variation in selected Anthoxanthum annuals? Plant Sys Evol\. 2016;302:731-8.
Loureiro J, Kron P, Temsch EM, Koutecký P, Lopes S, Castro M, et al. Isolation of plant nuclei for estimation of nuclear DNA content: overview and best practices. Cytometry A. 2021;99:318-27.
Doležel J, Bartoš J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry A. 2003;51A:127-8.
Bennett MD, Leitch IJ. Nuclear DNA amounts in angiosperms - progress, problems and prospects. Ann Bot. 2005;95:45-90.
Greilhuber J, Doležel J, Lysak MA, Bennett MD. The origin, evolution and proposed stabilization of the terms 'Genome size' and 'C-value' to describe nuclear DNA contents. Ann Bot. 2005;95:255-60.
Greilhuber J, Doležel J. 2C or not 2C: a closer look at cell nuclei and their DNA content. Chromosoma. 2009;118:391-400.
Pellicer J, Leitch IJ. The plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytol. 2019;226:301-5.
Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. Genome size diversity and its impact on the evolution of land plants. Genes. 2018;9:88.
Loureiro J, Trávníček P, Rauchova J, Urfus T, Vit P, Stech M, et al. The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia. 2010;82:3-21.
Greilhuber J, Leitch IJ. Genome size and the phenotype, Physical structure, behaviour and evolution of plant genomes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF, editors. Plant Genome Diversity. Volume 2. Wien: Springer-Verlag; 2013. p. 323-44.
Simonin KA, Roddy AB. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biol. 2018;16:e2003706.
Roddy AB, Théroux-Rancourt G, Abbo T, Benedetti JW, Brodersen CR, Castro M, et al. The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. Int J Plant Sci. 2020;181:75-87.
Novák P, Guignard MS, Neumann P, Kelly LJ, Mlinarec J, Koblížková A, et al. Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat Plants. 2020;6:1325-9.
Doležel J, Čížková J, Šimková H, Bartoš J. One major challenge of sequencing large plant genomes is to know how big they really are. Int J Mol Sci. 2018;19:3554.
Bainard JD, Husband BC, Baldwin SJ, Fazekas A, Gregory TR, Newmaster SG, et al. The effects of rapid desiccation on estimates of plant genome size. Chromosome Res. 2011;19:825-42.
Šmarda P, Stančík D. Ploidy level variability in south American fescues (Festuca L., Poaceae): use of flow cytometry in up to 5 1/2-year-old caryopses and herbarium specimens. Plant Biol. 2006;8:73-80.
Viruel J, Conejero M, Hidalgo O, Pokorny L, Powell RF, Forest F, et al. A target capture-based method to estimate ploidy from herbarium specimens. Front Plant Sci. 2019;10:937.
Šmarda P, Bureš P, Horová L, Leitch IJ, Mucina L, Pacini E, et al. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc Nat Acad Sci USA. 2014;111:E4096-102.
Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, et al. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Botany. 1998;82(Suppl. A):17-26.
Galbraith DW. Endoreduplicative standards for calibration of flow cytometric C-value measurements. Cytometry A. 2014;85:368-74.
Trávníček P, Ponert J, Urfus T, Jersáková J, Vrána J, Hřibová E, et al. Challenges of flow-cytometric estimation of nuclear genome size in orchids, a plant group with both whole-genome and progressively partial endoreplication. Cytometry A. 2015;87:958-66.
Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant. 1992;85:625-31.
Cossarizza A, Chang H-D, Radbruch A, Acs A, Adam D, Adam-Klages S, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol. 2019;49:1457-973.
Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2:2233-44.
Shapiro HM. Practical Flow Cytometry. New Jersey: John Wiley & Sons, Inc.; 2003.
Pellicer J, Powell RF, Leitch IJ. The application of flow cytometry for estimating genome size, ploidy level endopolyploidy, and reproductive modes in plants. In: Besse P, editor. Molecular plant taxonomy. Methods in molecular biology. Volume 2222. New York, NY: Humana; 2021. p. 325-62.
Šmarda P, Bureš P. Understanding intraspecific variation in genome size in plants. Preslia. 2010;82:41-61.
Vindeløv LL, Christensen IJ, Nissen NI. Standardization of high-resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout red blood cells as internal reference standards. Cytometry. 1983;3:328-31.
Šmarda P, Bureš P. The variation of base composition in plant genomes, Plant genomes, their residents, and their evolutionary dynamics. In: Wendel JF, Greilhuber J, Doležel J, Leitch IJ, editors. Plant genome diversity. Wien: Springer-Verlag; 2012. p. 209-36.
Trávníček P, Čertner M, Ponert J, Chumová Z, Jersáková J, Suda J. Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. New Phytol. 2019;224:1642-56.
Suda J, Leitch IJ. The quest for suitable reference standards in genome size research. Cytometry A. 2010;77A:717-20.
Osborne DJ, Boubriak II. DNA and desiccation tolerance. Seed Sci Res. 2008;4:175-85.
Leprince O, Colson P, Houssier C, Deltour R. Changes in chromatin structure associated with germination of maize and their relation with desiccation tolerance. Plant Cell Environ. 1995;18:619-29.
Leprince O, Buitink J. Introduction to desiccation biology: from old borders to new frontiers. Planta. 2015;242:369-78.
Leitch IJ, Johnston E, Pellicer J, Hidalgo O, Bennett MD. Plant DNA C-values Database (release 7.1, April 2019). 2019.
Greilhuber J. Cytochemistry and C-values - the less well known world of nuclear DNA amounts. Ann Bot. 2008;101:791-804.
Galbraith DW, Villalobos-Menuey E. Analysis of plant genome sizes using flow cytometry: a case study demonstrating dynamic range and measurement linearity. Beckman Coulter App Note. 2020;1-13. https://labplan.ie/content/uploads/2018/02/Plant-Genome-Analysis-by-Flow-Cytometry.pdf
Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, et al. The chromosome counts database (CCDB) - a community resource of plant chromosome numbers. New Phytol. 2015;206:19-26.
Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 2006;16:1262-9.
Kelly LJ, Renny-Byfield S, Pellicer J, Macas J, Novák P, Neumann P, et al. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytol. 2015;208:596-607.
Greilhuber J. Intraspecific variation in genome size: a critical reassessment. Annals of Botany. 1998;82(supplement A):27-35.
Greilhuber J. Intraspecific variation in genome size in angiosperms - identifying its existence. Ann Bot. 2005;95:91-8.
Noirot M, Barre P, Duperray C, Louarn J, Hamon S. Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in coffee tree. Ann Bot. 2003;92:259-64.
Noirot M, Barre P, Louarn J, Duperray C, Hamon S. Nucleus-cytosol interactions - a source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Ann Bot. 2000;86:309-16.
Price HJ, Hodnett G, Johnston JS. Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot. 2000;86:929-34.
Loureiro J, Rodriguez E, Doležel J, Santos C. Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot. 2006;98:515-27.
Wood JCS. Establishing and maintaining system linearity. Curr Protoc Cytom. 2009;47:1.4.1-1.4.14.
Vindeløv LL, Christensen IJ, Jensen G, Nissen NI. Limits of detection of nuclear DNA abnormalities by flow cytometric DNA analysis. Results obtained by a set of methods for sample-storage, staining and internal standardization. Cytometry. 1983;3:332-9.
Doležel J, Gohde W. Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow-cytometry. Cytometry. 1995;19:103-6.
Šmarda P, Horová L, Knápek O, Dieck H, Dieck M, Ražná K, et al. Multiple haploids, triploids, and tetraploids found in modern-day “living fossil” Ginkgo biloba. Horticulture Res. 2018;5:55.
Čertnerová D, Škaloud P. Substantial intraspecific genome size variation in golden-brown algae and its phenotypic consequences. Ann Bot. 2020;126:1077-87.
Melichárková A, Šlenker M, Zozomová-Lihová J, Skokanová K, Šingliarová B, Kačmárová T, et al. So closely related and yet so different: strong contrasts between the evolutionary histories of species of the Cardamine pratensis polyploid complex in Central Europe. Front Plant Sci. 2020;11:1988.
Šmarda P, Bureš P, Hovrová L, Rotreklová O. Intrapopulation genome size dynamics in Festuca pallens. Ann Bot. 2008;102:599-607.
Trávníček P, Kirschner J, Chudáčková H, Rooks F, Štěpánek J. Substantial genome size variation in Taraxacum stenocephalum (Asteraceae, Lactuceae). Folia Geobot. 2013;48:271-84.
Šmarda P, Bureš P. Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot. 2006;98:665-78.
Barow M, Meister A. Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry. 2002;47:1-7.
Meister A, Barow M. DNA base composition of plant genomes. In: Doležel J, Greilhuber J, Suda J, editors. Flow cytometry with plant cells. Weinheim: Viley-VCH; 2007. p. 177-215.
Šmarda P, Bureš P, Šmerda J, Horová L. Measurements of genomic GC content in plant genomes with flow cytometry: a test for reliability. New Phytol. 2012;193:513-21.
Meister A. Calculation of binding length of base-specific DNA dyes by comparison of sequence and flow cytometric data. Application to Oryza sativa and Arabidopsis thaliana. J Theor Biol. 2005;232:93-7.
Stackebrandt E, Liesack W. Nucleic acids and classification. In: Goodfellow M, O'Donnell AG, editors. Handbook of new bacterial systematics. Academic Press: London; 1993. p. 151-94.
Mann S, Chen Y-PP. Bacterial genomic G+C composition-eliciting environmental adaptation. Genomics. 2010;95:7-15.
Almpanis A, Swain M, Gatherer D, McEwan N. Correlation between bacterial G+C content, genome size and the G+C content of associated plasmids and bacteriophages. Microbial Genomic. 2018;4:4.
Rocha EPC, Danchin A. Base composition bias might result from competition for metabolic resources. Trends Genet. 2002;18:291-4.
Vinogradov AE. DNA helix: the importance of being GC-rich. Nucleic Acids Res. 2003;31:1838-44.
Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science. 1983;220:1049-51.
Otto F, Tsou KC. A comparative study of DAPI, DIPI, and Hoechst 33258 and 33342 as chromosomal DNA stains. Stain Technol. 1985;60:7-11.
Lewalski H, Otto FJ, Kranert T, Wassmuth R. Flow cytometric detection of unbalanced ram spermatozoa from heterozygous 1;20 translocation carriers. Cytogenet Genome Res. 1993;64:286-91.
Kapuscinski J. DAPI: a DNA-specific fluorescent probe. Biotech Histochem. 1995;70:220-33.
Wilson WD, Tanious FA, Barton HJ, Jones RL, Strekowski L, Boykin DW. Binding of 4′,6-diamidino-2-phenylindole (DAPI) to GC and mixed sequences in DNA: intercalation of a classical groove-binding molecule. J Am Chem Soc. 1989;111:5008-10.
Reis LA, Rocha MS. DNA interaction with DAPI fluorescent dye: force spectroscopy decouples two different binding modes. Biopolymers. 2017;107:e23015.
Bernardi G. Isochores and the evolutionary genomics of vertebrates. Gene. 2000;241:3-17.
Langlois RG, Carrano AV, Gray JW, Van Dilla MA. Cytochemical studies of metaphase chromosomes by flow cytometry. Chromosoma. 1980;77:229-51.
Godelle B, Cartier D, Marie D, Brown SC, Siljak-Yakovlev S. Heterochromatin study demonstrating the nonlinearity of fluorometry useful for calculating genomic base composition. Cytometry. 1993;14:618-26.
Abu-Daya A, Brown PM, Fox KR. DNA sequence preferences of several AT-selective minor groove binding ligands. Nucleic Acids Res. 1995;23:3385-92.
Breusegem SY, Clegg RM, Loontiens FG. Base-sequence specificity of Hoechst 33258 and DAPI binding to five (a/T)4 DNA sites with kinetic evidence for more than one high-affinity Hoechst 33258-AATT complex. J Mol Biol. 2002;315:1049-61.
Veleba A, Bureš P, Adamec L, Šmarda P, Lipnerová I, Horová L. Genome size and genomic GC content evolution in the miniature genome-sized family Lentibulariaceae. New Phytol. 2014;203:22-8.
Ibarra-Laclette E, Lyons E, Hernandez-Guzman G, Perez-Torres CA, Carretero-Paulet L, Chang T-H, et al. Architecture and evolution of a minute plant genome. Nature. 2013;498:94-8.
Black M, Bewley JD, Halmer P. The encyclopedia of seeds: science, technology and uses. Wallingford: CABI; 2006.p. 828.
Mickelson-Young L, Wear E, Mulvaney P, Lee T-J, Szymanski ES, Allen G, et al. A flow cytometric method for estimating S-phase duration in plants. J Exp Bot. 2016;67:6077-87.
Naill MC, Roberts SC. Cell cycle analysis of Taxus suspension cultures at the single cell level as an indicator of culture heterogeneity. Biotechnol Bioeng. 2005;90:491-500.
Lucretti S, Nardi L, Nisini PT, Moretti F, Gualberti G, Doležel J. Bivariate flow cytometry DNA/BrdUrd analysis of plant cell cycle. Methods Cell Sci. 1999;21:155-66.
Doonan JH. The plant cell cycle. In: Humphrey T, Brooks G, editors. Cell cycle control: mechanisms and protocols. Volume 296 methods in molecular biology. Totowa: Humana Press Inc; 2010. p. 31-50.
Sliwinska E. Nuclear DNA replication and seed quality. Seed Sci Res. 2009;19:15-25.
Bino RJ, Bergervoet JHW, De Vos CHR, Kraak HL, Lanteri S, Van Der Burg WJ, et al. Comparison of nuclear replication activity and protein expression patterns during tomato seed germination. Field Crop Res. 1996;45:71-7.
Yan LL, Zhang YJ, Gao WY, Man SL, Wang Y. In vitro and in vivo anticancer activity of steroid saponins of Paris polyphylla var. yunnanensis. Exp Oncol. 2009;31:27-32.
Parajuli P, Joshee N, Rimando AM, Mittal S, Yadav AK. In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med. 2009;75:41-8.
McMurphy LM, Rayburn AL. Nuclear alterations of maize plants grown in soil contaminated with coal fly ash. Arch Environ Contam Toxicol. 1993;25:520-4.
Monteiro MS, Rodriguez E, Loureiro J, Mann RM, Soares AMVM, Santos C. Flow cytometric assessment of cd genotoxicity in three plants with different metal accumulation and detoxification capacities. Ecotoxicol Environ Saf. 2010;73:1231-7.
Carballo JA, Pincheira J, de la Torre C. The G2 checkpoint activated by DNA damage does not prevent genome instability in plant cells. Biol Res. 2006;39:331-40.
Rodriguez E, Santos C, Azevedo R, Moutinho-Pereira J, Correia C, Dias MC. Chromium (VI) induces toxicity at different photosynthetic levels in pea. Plant Physiol Biochem. 2012;53:94-100.
Doležel J, Lucretti S, Molnár I, Cápal P, Giorgi D. Chromosome analysis and sorting. Cytometry A. 2021;99:328-42.
D'Amato F. Role of polyploidy in reproductive organs and tissues. In: Jori BM, editor. Embryology of angiosperms. New York: Springer Verlag; 1984. p. 519-66.
Leitch IJ, Dodsworth S. Endopolyploidy in plants. eLS. 2017. 1-10. https://doi.org/10.1002/9780470015902.a0020097.pub2
Nagl W. Nuclear organization. Annu Rev Plant Physiol. 1976;27:39-69.
Nagl W. DNA endoreduplication and polyteny understood as evolutionary strategies. Nature. 1976;261:614-5.
Joubès J, Chevalier C. Endoreduplication in higher plants. Plant Mol Biol. 2000;43:735-45.
Maluszynska J, Kolano B, Sas-Nowosielska H. Endopolyploidy in plants, Physical structure, behaviour and evolution of plant genomes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF, editors. Plant genome diversity. Volume 2. Wien: Springer-Verlag; 2013. p. 99-119.
Sugimoto-Shirasu K, Roberts K. “Big it up”: endoreduplication and cell-size control in plants. Curr Opin Plant Biol. 2003;6:544-53.
Sabelli PA. Replicate and die for your own good: Endoreduplication and cell death in the cereal endosperm. J Cereal Sci. 2012;56:9-20.
Sliwinska E, Bassel GW, Bewley JD. Germination of Arabidopsis thaliana seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyl. J Exp Bot. 2009;60:3587-94.
Makowczyńska J, Andrzejewska-Golec E, Sliwinska E. Nuclear DNA content in different plant materials of Plantago asiatica L. cultured in vitro. Plant Cell Tissue Organ Cult. 2008;94:65.
Rewers M, Sliwinska E. Endoreduplication in the germinating embryo and young seedling is related to the type of seedling establishment but is not coupled with superoxide radical accumulation. J Exp Bot. 2014;65:4385-96.
Barow M, Jovtchev G. Endopolyploidy in plants and its analysis by flow cytometry. In: Doležel J, Greilhuber J, Suda J, editors. Flow cytometry with plant cells. Weinheim: Wiley-VCH Verlag GmbH & Co.; 2007. p. 349-72.
Barow M, Meister A. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ. 2003;26:571-84.
Bainard JD, Bainard LD, Henry TA, Fazekas AJ, Newmaster SG. A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits. New Phytol. 2012;196:1240-50.
Rewers M, Sliwinska E. Endoreduplication intensity as a marker of seed developmental stage in the Fabaceae. Cytometry A. 2012;81A:1067-75.
Larkins BA, Dilkes BP, Dante RA, Coelho CM, Ym W, Liu Y. Investigating the hows and whys of DNA endoreduplication. J Exp Bot. 2001;52:183-92.
Lukaszewska E, Sliwinska E. Most organs of sugar-beet (Beta vulgaris L.) plants at the vegetative and reproductive stages of development are polysomatic. Sex Plant Reprod. 2007;20:99-107.
Galbraith DW, Harkins KR, Knapp S. Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol. 1991;96:985-9.
Zhang C, Gong FC, Lambert GM, Galbraith DW. Cell type-specific characterization of nuclear DNA contents within complex tissues and organs. Plant Methods. 2005;1:7.
Gendreau E, Höfte H, Grandjean O, Brown S, Traas J. Phytochrome controls the number of endoreduplication cycles in the Arabidopsis thaliana hypocotyl. Plant J. 1998;13:221-30.
Chen CT, Setter TL. Response of potato tuber cell division and growth to shade and elevated CO2. Ann Bot. 2003;91:373-81.
Bainard LD, Bainard JD, Newmaster SG, Klironomos JN. Mycorrhizal symbiosis stimulates endoreduplication in angiosperms. Plant Cell Environ. 2011;34:1577-85.
Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC. Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc Nat Acad Sci USA. 2010;107:460-5.
Caillaud M-C, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecomte P, de Almeida EJ, et al. Root-knot nematodes manipulate plant cell functions during a compatible interaction. J Plant Physiol. 2008;165:104-13.
Lingua G, D'Agostino G, Fusconi A, Berta G. Nuclear changes in pathogen-infected tomato roots. Eur J Histochem. 2001;45:21-30.
Scholes DR, Paige KN. Chromosomal plasticity: mitigating the impacts of herbivory. Ecology. 2011;92:1691-8.
Bory S, Catrice O, Brown SC, Leitch IJ, Gigant R, Chiroleu F, et al. Natural polyploidy in Vanilla planifolia (Orchidaceae). Genome. 2008;51:816-26.
Hřibová E, Holušová K, Trávníček P, Petrovská B, Ponert J, Šimková H, et al. The enigma of progressively partial endoreplication: new insights provided by flow cytometry and next-generation sequencing. Genome Biol Evol. 2016;8:1996-2005.
Brown SC, Bourge M, Maunoury N, Wong M, Wolfe Bianchi M, Lepers-Andrzejewski S, et al. DNA remodeling by strict partial endoreplication in orchids, an original process in the plant kingdom. Genome Biol Evol. 2017;9:1051-71.
Lemontey C, Mousset-Déclas C, Munier-Jolain N, Boutin JP. Maternal genotype influences pea seed size by controlling both mitotic activity during early embryogenesis and final endoreduplication level/cotyledon cell size in mature seed. J Exp Bot. 2000;51:167-75.
Nowicka A, Kovacik M, Tokarz B, Vrána J, Zhang Y, Weigt D, et al. Dynamics of endoreduplication in developing barley seeds. J Exp Bot. 2021;72:268-82.
Matzk F, Meister A, Schubert I. An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J. 2000;21:97-108.
Barcaccia G, Arzenton F, Sharbel TF, Varotto S, Parrini P, Lucchin M. Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L. Heredity. 2006;96:322-34.
Delgado L, Galdeano F, Sartor ME, Quarin CL, Espinoza F, Ortiz JPA. Analysis of variation for apomictic reproduction in diploid Paspalum rufum. Ann Bot. 2014;113:1211-8.
Samaniego F, Kolář F, Urfus T, Barragán Á, Romoleroux K. Determination of apomixis by flow cytometry in two species of Lachemilla (Rosaceae) in Ecuador. Neotropical Biodiversity. 2018;4:152-63.
Koutecký P, Baurová T, Štech M, Kosnar J, Karásek J. Hybridization between diploid Centaurea pseudophrygia and tetraploid C. jacea (Asteraceae): the role of mixed pollination, unreduced gametes, and mentor effects. Biol J Linn Soc. 2011;104:93-106.
Krahulcová A, Krahulec F, Vladimirov V. Impact of interspecific hybridization within a polyploid agamic complex of Pilosella (Asteraceae, Cichorieae) in Bulgaria compared with Central Europe. Willdenowia. 2018;48:345-62.
Chrtek J, Herben T, Rosenbaumová R, Münzbergová Z, Dočkalová Z, Zahradníček J, et al. Cytotype coexistence in the field cannot be explained by inter-cytotype hybridization alone: linking experiments and computer simulations in the sexual species Pilosella echioides (Asteraceae). BMC Evol Biol. 2017;17:87.
Friedman WE, Madrid EN, Williams JH. Origin of the fittest and survival of the fittest: relating female gametophyte development to endosperm genetics. Int J Plant Sci. 2008;169:79-92.
Friedman WE, Ryerson KC. Reconstructing the ancestral female gametophyte of angiosperms: insights from Amborella and other ancient lineages of flowering plants. Am J Bot. 2009;96:129-43.
Kreiner JM, Kron P, Husband BC. Evolutionary dynamics of unreduced gametes. Trends Genet. 2017;33:583-93.
Aliyu O, Schranz E, Sharbel T. Quantitative variation for apomictic reproduction in the genus Boechera (Brassicaceae). Am J Bot. 2010;97:1719-31.
Kaushal P, Dwivedi KK, Radhakrishna A, Srivastava MK, Kumar V, Roy AK, et al. Partitioning apomixis components to understand and utilize gametophytic apomixis. Front Plant Sci. 2019;10:256.
Matzk F. Reproductive mode screening. In: Doležel J, Greilhuber J, Suda J, editors. Flow cytometry with plant cells. Weinheim: Wiley-VCH Verlag GmbH & Co.; 2007. p. 131-51.
Krahulcová A, Rotreklová O. Use of flow cytometry in research on apomictic plants. Preslia. 2010;82:23-39.
Rojek J, Kapusta M, Kozieradzka-Kiszkurno M, Majcher D, Górniak M, Sliwinska E, et al. Establishing the cell biology of apomictic reproduction in diploid Boechera stricta (Brassicaceae). Ann Bot. 2018;122:513-39.
Madrid EN, Friedman WE. Female gametophyte and early seed development in Peperomia (Piperaceae). Am J Bot. 2010;97:1-14.
Brožová V, Koutecký P, Doležal J. Plant apomixis is rare in Himalayan high-alpine flora. Sci Rep. 2019;9:14386.
Sabelli PA. Seed development: a comparative overview on biology of morphology, physiology, and biochemistry between monocot and dicot plants. In: Agrawal G, Rakwal R, editors. Seed development: OMICS technologies toward improvement of seed quality and crop yield. Dordrecht: Springer; 2012. p. 3-25.
Sliwinska E, Zielinska E, Jedrzejczyk I. Are seeds suitable for flow cytometric estimation of plant genome size? Cytometry A. 2005;64A:72-9.
Doležel J, Bartoš J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot. 2005;95:99-110.
Talent N, Dickinson TA. Endosperm formation in aposporous Crataegus (Rosaceae, Spiraeoideae, tribe Pyreae): parallels to Ranunculaceae and Poaceae. New Phytol. 2007;173:231-49.
Lepší M, Koutecký P, Nosková J, Lepší P, Urfus T, Rich TCG. Versatility of reproductive modes and ploidy level interactions in Sorbus s.l. (Malinae, Rosaceae). Botanic J Linnean Soc. 2019;191:502-22.
Crane CF. Classification of apomictic mechanisms. In: Savidan Y, Carman JG, Dresselhaus T, editors. The flowering of apomixis: from mechanisms to genetic engineering. Mexico City, Mexico: CIMMYT, IRD & European Commission; 2001. p. 24-43.
Dobeš C, Lückl A, Hülber K, Paule J. Prospects and limits of the flow cytometric seed screen-insights from Potentilla sensu lato (Potentilleae, Rosaceae). New Phytol. 2013;198:605-16.
Kolarčik V, Kocová V, Vašková D. Flow cytometric seed screen data are consistent with models of chromosome inheritance in asymmetrically compensating allopolyploids. Cytometry A. 2018;93:737-48.
Bairu MW, Aremu AO, Van Staden J. Somaclonal variation in plants: causes and detection methods. Plant Growth Regul. 2011;63:147-73.
Miler N, Kulus D, Sliwinska E. Nuclear DNA content as an indicator of inflorescence colour stability of in vitro propagated solid and chimera mutants of chrysanthemum. Plant Cell Tiss Org Cult. 2020;143:421-30.
Arun B, Singh BD, Sharma S, Paliwal R, Joshi AK. Development of somaclonal variants of wheat (Triticum aestivum L.) for yield traits and disease resistance suitable for heat stressed and zero-till conditions. Field Crop Res. 2007;103:62-9.
Żabicki P, Sliwinska E, Mitka J, Sutkowska A, Tuleja M, Migdałek G, et al. Does somaclonal variation play advantageous role in conservation practice of endangered species?: comprehensive genetic studies of in vitro propagated plantlets of Viola stagnina kit. (Violaceae). Plant cell. Tissue Org Cult. 2019;136:339-52.
Antoniadi I, Skalický V, Sun G, Ma W, Galbraith DW, Novák O, et al. Fluorescence activated cell sorting-a selective tool for plant cell isolation and analysis. Cytometry Part A. 2021. https://doi.org/10.1002/cyto.a.24461
Greilhuber J, Temsch EM, Loureiro J. Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J, editors. Flow cytometry with plant cells. Weinheim: Wiley-VCH; 2007. p. 67-102.
Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants
Integrative Study of Genotypic and Phenotypic Diversity in the Eurasian Orchid Genus Neotinea