Diploid and tetraploid cytotypes of the flagship Cape species Dicerothamnus rhinocerotis (Asteraceae): variation in distribution, ecological niche, morphology and genetics
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CZ.02.2.26/0.0/0.0/16_027/0007852
Ministry of Education, Youth and Sports of the Czech Republic, Operational Programme Research, Development and Education, The European Structural and Investment Funds, EU
Ministry of Education, Youth and Sports of the Czech Republic
RVO 67985939
Czech Academy of Sciences, Institute of Botany
PubMed
37410810
PubMed Central
PMC11082512
DOI
10.1093/aob/mcad084
PII: 7220634
Knihovny.cz E-zdroje
- Klíčová slova
- Elytropappus rhinocerotis, Stoebe clade, Asteraceae, Compositae, Gnaphalieae, RADseq, South Africa, flow cytometry, ploidy level, renosterbos, renosterveld,
- MeSH
- Asteraceae * genetika MeSH
- délka genomu MeSH
- diploidie * MeSH
- ekosystém * MeSH
- genetická variace MeSH
- genom rostlinný MeSH
- tetraploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: The Greater Cape Floristic Region is one of the world's biodiversity hotspots and is considered poor in polyploids. To test this assumption, ploidy variation was investigated in a widespread Cape shrub, Dicerothamnus rhinocerotis (renosterbos, Asteraceae). The aim was to elucidate the cytotype distribution and population composition across the species range, and to assess differences in morphology, environmental niches and genetics. METHODS: Ploidy level and genome size were determined via flow cytometry and cytotype assignment was confirmed by chromosome counting. Restriction site-associated DNA sequencing (RADseq) analyses were used to infer genetic relationships. Cytotype climatic and environmental niches were compared using a range of environmental layers and a soil model, while morphological differences were examined using multivariate methods. KEY RESULTS: The survey of 171 populations and 2370 individuals showed that the species comprises diploid and tetraploid cytotypes, no intermediates and only 16.8 % of mixed populations. Mean 2C values were 1.80-2.06 pg for diploids and 3.48-3.80 pg for tetraploids, with very similar monoploid genome sizes. Intra-cytotype variation showed a significant positive correlation with altitude and longitude in both cytotypes and with latitude in diploids. Although niches of both cytotypes were highly equivalent and similar, their optima and breadth were shifted due to differences mainly in isothermality and available water capacity. Morphometric analyses showed significant differences in the leaves and corolla traits, the number of florets per capitulum, and cypsela dimensions between the two cytotypes. Genetic analyses revealed four groups, three of them including both cytotypes. CONCLUSIONS: Dicerothamnus rhinocerotis includes two distinct cytotypes that are genetically similar. While tetraploids arise several times independently within different genetic groups, morphological and ecological differences are evident between cytotypes. Our results open up new avenues for questions regarding the importance of ploidy in the megadiverse Cape flora, and exemplify the need for population-based studies focused on ploidy variation.
Department of Botany Faculty of Science Charles University Benátská 2 Prague 120 00 Czech Republic
Independent botanist Scarborough 7975 Cape Town South Africa
Institute of Botany of the Czech Academy of Sciences Zámek 1 Průhonice 252 43 Czech Republic
The Compton Herbarium Kirstenbosch National Botanical Gardens Cape Town 7735 South Africa
Zobrazit více v PubMed
Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP.. 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38: 541–545. doi:10.1111/ecog.01132. DOI
Akiyama R, Sun J, Hatakeyama M, et al.. 2021. Fine-scale empirical data on niche divergence and homeolog expression patterns in an allopolyploid and its diploid progenitor species. New Phytologist 229: 3587–3601. PubMed PMC
Andrés-Sánchez S, Verboom GA, Galbany-Casals M, Bergh NG.. 2019. Evolutionary history of the arid climate-adapted Helichrysum (Asteraceae: Gnaphalieae): Cape origin and association between annual life-history and low chromosome numbers. Journal of Systematics and Evolution 57: 468–487.
Arrigo N, de La Harpe M, Litsios G, et al.. 2016. Is hybridization driving the evolution of climatic niche in Alyssum montanum? American Journal of Botany 103: 1348–1357. doi:10.3732/ajb.1500368. PubMed DOI
Bayer RJ, Puttock CF, Kelchner SA.. 2000. Phylogeny of South African Gnaphalieae (Asteraceae) based on two noncoding chloroplast sequences. American Journal of Botany 87: 259–272. PubMed
Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA.. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975–986. doi:10.1111/j.1469-8137.2008.02528.x. PubMed DOI
Bergh NG, Linder HP.. 2009. Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae–Gnaphalieae). Molecular Phylogenetics and Evolution 51: 5–18. doi:10.1016/j.ympev.2008.09.001. PubMed DOI
Bergh NG, Hedderson TA, Linder HP, Bond WJ.. 2007. Palaeoclimate-induced range shifts may explain current patterns of spatial genetic variation in renosterbos (Elytropappus rhinocerotis, Asteraceae). Taxon 56: 393–408. doi:10.1002/tax.562011. DOI
Bergh NG, Verboom GA, Rouget M, Cowling RM.. 2014. Vegetation types of the Greater Cape Floristic Region. In: Allsopp N, Colville JF, Verboom GA, eds. Fynbos: ecology, evolution, and conservation of a megadiverse region. Oxford; New York: Oxford University Press, 26–46.
Bond WJ, van Wilgen BW.. 1996. Fire and plants. London: Chapman and Hall.
Born J, Linder H, Desmet P.. 2006. The Greater Cape Floristic Region. Journal of Biogeography 34: 147–162.
Brandrud MK, Paun O, Lorenzo MT, Nordal I, Brysting AK.. 2017. RADseq provides evidence for parallel ecotypic divergence in the autotetraploid Cochlearia officinalis in Northern Norway. Scientific Reports 7: 5573. doi:10.1038/s41598-017-05794-z. PubMed DOI PMC
Broennimann O, Fitzpatrick MC, Pearman PB, et al.. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21: 481–497.
Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH.. 2011. Stacks: building and genotyping loci de novo from short-read sequences. G3 Genes Genomes Genetics 1: 171–182. doi:10.1534/g3.111.000240. PubMed DOI PMC
Chase BM, Meadows ME.. 2007. Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth-Science Reviews 84: 103–138. doi:10.1016/j.earscirev.2007.06.002. DOI
Chumová Z, Krejčíková J, Mandáková T, Suda J, Trávníček P.. 2015. Evolutionary and taxonomic implications of variation in nuclear genome size: lesson from the grass genus Anthoxanthum (Poaceae). PLoS One 10: e0133748. doi:10.1371/journal.pone.0133748. PubMed DOI PMC
Chumová Z, Mandáková T, Trávníček P.. 2021. On the origin of tetraploid vernal grasses (Anthoxanthum) in Europe. Genes 12: 966. doi:10.3390/genes12070966. PubMed DOI PMC
Chumová Z, Belyayev A, Mandáková T, et al.. 2022. The relationship between transposable elements and ecological niches in the Greater Cape Floristic Region: a study on the genus Pteronia (Asteraceae). Frontiers in Plant Science 13: 982852. doi:10.3389/fpls.2022.982852. PubMed DOI PMC
Cires E, Cuesta C, Revilla MA, Fernández Prieto JA.. 2010. Intraspecific genome size variation and morphological differentiation of Ranunculus parnassifolius (Ranunculaceae), an Alpine–Pyrenean–Cantabrian polyploid group. Biological Journal of the Linnean Society 101: 251–271. doi:10.1111/j.1095-8312.2010.01517.x. DOI
Di Cola V, Broennimann O, Petitpierre B, et al.. 2017. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40: 774–787. doi:10.1111/ecog.02671. DOI
Cowling RM, Heijnis CE.. 2001. The identification of broad habitat units as biodiversity entities for systematic conservation planning in the Cape Floristic Region. South African Journal of Botany 67: 15–38. doi:10.1016/s0254-6299(15)31087-5. DOI
Cowling RM, Holmes PM.. 1992. Flora and vegetation. In: Cowling RM, ed. The ecology of fynbos: nutrients, fire and diversity. Cape Town: Oxford University Press, 23–61.
Cowling RM, Potts AJ, Bradshaw PL, et al.. 2015. Variation in plant diversity in mediterranean-climate ecosystems: the role of climatic and topographical stability. Journal of Biogeography 42: 552–564.
Cramer MD, Verboom GA.. 2017. Measures of biologically relevant environmental heterogeneity improve prediction of regional plant species richness. Journal of Biogeography 44: 579–591.
Cramer MD, Wootton LM, van Mazijk R, Verboom GA. 2019. New regionally modelled soil layers improve prediction of vegetation type relative to that based on global soil models. Diversity and Distributions 25: 1736–1750.
Dai X, Li X, Huang Y, Liu X.. 2020. The speciation and adaptation of the polyploids: a case study of the Chinese Isoetes L. diploid-polyploid complex. BMC Evolutionary Biology 20: 118. doi:10.1186/s12862-020-01687-4. PubMed DOI PMC
Danecek P, Auton A, Abecasis G, et al..; 1000 Genomes Project Analysis Group. 2011. The variant call format and VCFtools. Bioinformatics 27: 2156–2158. doi:10.1093/bioinformatics/btr330. PubMed DOI PMC
Danielson JJ, Gesch DB.. 2011. Global multi-resolution terrain elevation data 2010 (GMTED2010). Washington, DC: US Geological Survey.
Dekker TG, Fourie TG, Matthee E, et al.. 1988. Studies of South African medicinal plants. Part 7. Rhinocerotinoic acid: a labdane diterpene with anti-inflammatory properties from Elytropappus rhinocerotis. South African Journal of Chemistry 41: 33–35.
Díez CM, Gaut BS, Meca E, et al.. 2013. Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytologist 199: 264–276. doi:10.1111/nph.12247. PubMed DOI PMC
Dogan M, Pouch M, Mandáková T, et al.. 2021. Evolution of tandem repeats is mirroring post-polyploid cladogenesis in Heliophila (Brassicaceae). Frontiers in Plant Science 11: 607893. PubMed PMC
Doležel J, Greilhuber J, Suda J.. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233–2244. doi:10.1038/nprot.2007.310. PubMed DOI
Dormann CF, Elith J, Bacher S, et al.. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46.
Duchoslav M, Šafářová L, Jandová M.. 2013. Role of adaptive and non-adaptive mechanisms forming complex patterns of genome size variation in six cytotypes of polyploid Allium oleraceum (Amaryllidaceae) on a continental scale. Annals of Botany 111: 419–431. doi:10.1093/aob/mcs297. PubMed DOI PMC
Duchoslav M, Jandová M, Kobrlová L, Šafářová L, Brus J, Vojtěchová K.. 2021. Intricate distribution patterns of six cytotypes of Allium oleraceum at a continental scale: niche expansion and innovation followed by niche contraction with increasing ploidy level. Frontiers in Plant Science 11: 591137. PubMed PMC
Dynesius M, Jansson R.. 2000. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences of the USA 97: 9115–9120. doi:10.1073/pnas.97.16.9115. PubMed DOI PMC
Edgeloe JM, Severn-Ellis AA, Bayer PE, et al.. 2022. Extensive polyploid clonality was a successful strategy for seagrass to expand into a newly submerged environment. Proceedings of the Royal Society B: Biological Sciences 289: 20220538. PubMed PMC
Elliott TL, Muasya AM, Bureš P.. 2023. Complex patterns of ploidy in a holocentric plant clade (Schoenus, Cyperaceae) in the Cape biodiversity hotspot. Annals of Botany 131: 143–156. doi:10.1093/aob/mcac027. PubMed DOI PMC
Evanno G, Regnaut S, Goudet J.. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14: 2611–2620. doi:10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Francis RM. 2017. pophelper: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources 17: 27–32. doi:10.1111/1755-0998.12509. PubMed DOI
Frichot E, François O.. 2015. LEA: an R package for landscape and ecological association studies. Methods in Ecology and Evolution 6: 925–929. doi:10.1111/2041-210x.12382. DOI
Frichot E, Mathieu F, Trouillon T, Bouchard G, François O.. 2014. Fast and efficient estimation of individual ancestry coefficients. Genetics 196: 973–983. doi:10.1534/genetics.113.160572. PubMed DOI PMC
Friendly M. 2002. Corrgrams: exploratory displays for correlation matrices. American Statistician 56: 316–324. doi:10.1198/000313002533. DOI
Garcia S, Panero JL, Široký J, Kovařík A.. 2010. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biology 10: 176. doi:10.1186/1471-2229-10-176. PubMed DOI PMC
Glen HF, Germishuizen G, eds. 2010. Botanical exploration of southern Africa. Pretoria: South African National Biodiversity Institute.
Glennon KL, Suda J, Cron GV.. 2019. DNA ploidy variation and population structure of the morphologically variable Helichrysum odoratissimum (L.) Sweet (Asteraceae) in South Africa. International Journal of Plant Sciences 180: 755–767. doi:10.1086/704355. DOI
Hijmans A, Phillips S, Leathwick J, Elith J.. 2022. terra: spatial data handling with terra. R package version 1.5.29. https://CRAN.R-project.org/package=terra (10 November 2022, date last accessed).
Hodgson JG, Sharafi M, Jalili A, et al.. 2010. Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? Annals of Botany 105: 573–584. doi:10.1093/aob/mcq011. PubMed DOI PMC
Huang C-H, Zhang C, Liu M, et al.. 2016. Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Molecular Biology and Evolution 33: 2820–2835. doi:10.1093/molbev/msw157. PubMed DOI PMC
Husband BC, Sabara HA.. 2004. Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). New Phytologist 161: 703–713. doi:10.1046/j.1469-8137.2004.00998.x. PubMed DOI
Huson DH, Bryant D.. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254–267. doi:10.1093/molbev/msj030. PubMed DOI
Innangi M, Fioretto A, Fondón CL, et al.. 2020. Tuber aestivum is associated with changes in soil chemistry and reduced biological quality in a Quercus pubescens stand in northern Italy. Pedobiologia 80: 150648. doi:10.1016/j.pedobi.2020.150648. DOI
Jombart T, Ahmed I.. 2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27: 3070–3071. doi:10.1093/bioinformatics/btr521. PubMed DOI PMC
Jombart T, Devillard S, Balloux F.. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11: 94. doi:10.1186/1471-2156-11-94. PubMed DOI PMC
Karger DN, Conrad O, Böhner J, et al.. 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4: 170122. doi:10.1038/sdata.2017.122. PubMed DOI PMC
Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW.. 2012. Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge: Cambridge University Press.
Kemper J, Cowling RM, Richardson DM.. 1999. Fragmentation of South African renosterveld shrublands: effects on plant community structure and conservation implications. Biological Conservation 90: 103–111. doi:10.1016/s0006-3207(99)00021-x. DOI
Kirchheimer B, Schinkel CCF, Dellinger AS, et al.. 2016. A matter of scale: apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. Journal of Biogeography 43: 716–726. doi:10.1111/jbi.12663. PubMed DOI PMC
Knaus BJ, Grünwald NJ.. 2017. vcfr: a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources 17: 44–53. doi:10.1111/1755-0998.12549. PubMed DOI
Koekemoer M. 2019. Taxonomy and reclassification of South African Asteraceae genus Elytropappus (Gnaphalieae, Asteraceae), the description of two new genera and two new species. Phytotaxa 403: 248–284. doi:10.11646/phytotaxa.403.4.1. DOI
Koutecký P. 2015. MorphoTools: a set of R functions for morphometric analysis. Plant Systematics and Evolution 301: 1115–1121.
Krejčíková J, Sudová R, Lučanová M, et al.. 2013a. High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of Oxalis in the Greater Cape Floristic Region. Annals of Botany 111: 641–649. doi:10.1093/aob/mct030. PubMed DOI PMC
Krejčíková J, Sudová R, Oberlander KC, Dreyer LL, Suda J.. 2013b. Cytogeography of Oxalis pes-caprae in its native range: where are the pentaploids? Biological Invasions 15: 1189–1194.
Levin DA. 2002. The role of chromosomal change in plant evolution. New York: Oxford University Press.
Levyns MR. 1926. A preliminary note on the rhenoster bush (Elytropappus rhinocerotis) and the germination of its seed. Transactions of the Royal Society of South Africa 14: 383–388. doi:10.1080/00359192609519647. DOI
Levyns MR. 1929. The problem of the rhenoster bush. South African Journal of Science 26: 166–169.
Levyns MR. 1935a. A revision of Elytropappus Cass. Journal of South African Botany 1: 89–103.
Levyns MR. 1935b. Veld-burning experiments at Oakdale, Riversdale. Transactions of the Royal Society of South Africa 23: 231–243. doi:10.1080/00359193509518893. DOI
Linder HP. 2003. The radiation of the Cape flora, southern Africa. Biological Reviews 78: 597–638. doi:10.1017/s1464793103006171. PubMed DOI
Linder HP, Suda J, Weiss-Schneeweiss H, Trávníček P, Bouchenak-Khelladi Y.. 2017. Patterns, causes and consequences of genome size variation in Restionaceae of the Cape flora. Botanical Journal of the Linnean Society 183: 515–531. doi:10.1093/botlinnean/box005. DOI
Lischer HEL, Excoffier L.. 2012. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28: 298–299. doi:10.1093/bioinformatics/btr642. PubMed DOI
Liu CR, Berry PM, Dawson TP, Pearson RG.. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385–393. doi:10.1111/j.0906-7590.2005.03957.x. DOI
Low AB, Rebelo AG, Bredenkamp GJ.. 1996. Vegetation of South Africa, Lesotho and Swaziland: a companion to the vegetation map of South Africa, Lesotho and Swaziland. Pretoria: Department of Environmental Affairs & Tourism.
Mandáková T, Lysak MA.. 2016. Chromosome preparation for cytogenetic analyses in Arabidopsis In: Stacey G, Birchler J, Ecker J, Martin CR, Stitt M, Zhou J-M, eds. Current protocols in plant biology. Hoboken: John Wiley, 43–51. PubMed
Mandáková T, Mummenhoff K, Al-Shehbaz IA, Mucina L, Muehlhausee A, Lysak MA.. 2012. Whole-genome triplication and species radiation in the southern African tribe Heliophileae (Brassicaceae). Taxon 61: 989–1000.
Manning J, Goldblatt P,. eds. 2012. Plants of the Greater Cape Floristic Region. Pretoria: SANBI.
Marloth R. 1908. Das Kapland. Jena: Gustav Fischer.
Maroyi A. 2019. Ethnomedicinal uses, phytochemistry and pharmacological properties of Elytropappus rhinocerotis. Journal of Pharmaceutical Sciences and Research 11: 3508–3513.
McCormack JE, Zellmer AJ, Knowles LL.. 2010. Does niche divergence accompany allopatric divergence in Aphelocoma Jays as predicted under ecological speciation?: Insights from tests with niche models. Evolution 64: 1231–1244. doi:10.1111/j.1558-5646.2009.00900.x. PubMed DOI
Molina-Henao YF, Hopkins R.. 2019. Autopolyploid lineage shows climatic niche expansion but not divergence in Arabidopsis arenosa. American Journal of Botany 106: 61–70. doi:10.1002/ajb2.1212. PubMed DOI
Mucina L, Roux A, Rutherford MC, et al.2006. Succulent Karoo biome. In: Mucina L, Rutherford M, eds. The vegetation of South Africa, Lesotho and Swaziland. Pretoria: South African National Biodiversity Institute, 220–299.
Mucina L, Rutherford M, eds. 2006. The vegetation of South Africa, Lesotho and Swaziland. Pretoria: South African National Biodiversity Institute.
Murdoch DJ, Chow ED.. 1996. A graphical display of large correlation matrices. American Statistician 50: 178–180. doi:10.2307/2684435. DOI
Myburgh AM, Daniels SR.. 2022. Between the Cape Fold Mountains and the deep blue sea: comparative phylogeography of selected codistributed ectotherms reveals asynchronous cladogenesis. Evolutionary Applications 15: 1967–1987. doi:10.1111/eva.13493. PubMed DOI PMC
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J.. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858. doi:10.1038/35002501. PubMed DOI
Nuismer SL, Cunningham BM.. 2005. Selection for phenotypic divergence between diploid and autotetraploid Heuchera grossulariifolia. Evolution 59: 1928–1935. PubMed
Oberlander KC, Dreyer LL, Goldblatt P, Suda J, Linder HP.. 2016. Species-rich and polyploid-poor: insights into the evolutionary role of whole-genome duplication from the Cape flora biodiversity hotspot. American Journal of Botany 103: 1336–1347. doi:10.3732/ajb.1500474. PubMed DOI
Ortiz, EM. 2019. vcf2phylip v2.0: convert a VCF matrix into several matrix formats for phylogenetic analysis. Zenodo. https://zenodo.org/record/2540861#.YGYaJK8zaUk.
Pante E, Simon-Bouhet B.. 2013. marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS One 8: e73051. doi:10.1371/journal.pone.0073051. PubMed DOI PMC
Paris JR, Stevens JR, Catchen JM.. 2017. Lost in parameter space: a road map for stacks. Methods in Ecology and Evolution 8: 1360–1373. doi:10.1111/2041-210x.12775. DOI
Pegoraro L, Cafasso D, Rinaldi R, Cozzolino S, Scopece G.. 2016. Habitat preference and flowering-time variation contribute to reproductive isolation between diploid and autotetraploid Anacamptis pyramidalis. Journal of Evolutionary Biology 29: 2070–2082. doi:10.1111/jeb.12930. PubMed DOI
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE.. 2012. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7: e37135. doi:10.1371/journal.pone.0037135. PubMed DOI PMC
Phillips SJ, Dudík M, Schapire RE.. 2022. Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/ (9 April 2022, date last accessed).
Pritchard JK, Stephens M, Donnelly P.. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959. doi:10.1093/genetics/155.2.945. PubMed DOI PMC
Procheş S, Cowling RM, du Preez DR.. 2005. Patterns of geophyte diversity and storage organ size in the winter-rainfall region of southern Africa. Diversity and Distributions 11: 101–109. doi:10.1111/j.1366-9516.2005.00132.x. DOI
R Core Team. 2021. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.
Rebelo AG, Boucher C, Helme N, Mucina L, Rutherford MC.. 2006. Fynbos biome In: Mucina L, Rutherford MC, eds. The vegetation of South Africa, Lesotho and Swaziland. Pretoria: South African Biodiversity Institute, 53–219.
Rejlová L, Chrtek J, Trávníček P, Lučanová M, Vít P, Urfus T.. 2019. Polyploid evolution: the ultimate way to grasp the nettle. PLoS One 14: e0218389. doi:10.1371/journal.pone.0218389. PubMed DOI PMC
Ren R, Wang H, Guo C, et al.. 2018. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Molecular Plant 11: 414–428. doi:10.1016/j.molp.2018.01.002. PubMed DOI
Rice A, Šmarda P, Novosolov M, et al.. 2019. The global biogeography of polyploid plants. Nature Ecology & Evolution 3: 265–273. doi:10.1038/s41559-018-0787-9. PubMed DOI
Schliep KP. 2011. phangorn: phylogenetic analysis in R. Bioinformatics 27: 592–593. doi:10.1093/bioinformatics/btq706. PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW.. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675. doi:10.1038/nmeth.2089. PubMed DOI PMC
Schoener TW. 1968. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49: 704–726. doi:10.2307/1935534. DOI
Semple JC, Watanabe K.. 2009. A review of chromosome numbers in Asteraceae with hypotheses on chromosomal base number evolution. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ, eds. Systematics, evolution and biogeography of Compositae. Vienna: International Association for Plant Taxonomy, 61–72.
Sliwinska E, Loureiro J, Leitch IJ, et al.. 2022. Application-based guidelines for best practices in plant flow cytometry. Cytometry. Part A 101: 749–781. PubMed
Slovák M, Urfus T, Vít P, Marhold K.. 2009. The Balkan endemic Picris hispidissima (Compositae): morphology, nuclear DNA content and relationship to the polymorphic P. hieracioides. Plant Systematics and Evolution 278: 187–201. doi:10.1007/s00606-008-0137-5. DOI
Snijman D, ed. 2013. The extra Cape flora. Pretoria: SANBI.
Soltis PS, Soltis DE.. 2016. Ancient WGD events as drivers of key innovations in angiosperms. Current Opinion in Plant Biology 30: 159–165. doi:10.1016/j.pbi.2016.03.015. PubMed DOI
Štorchová H, Hrdličková R, Chrtek J, Tetera M, Fitze D, Fehrer J.. 2000. An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49: 79–84. doi:10.2307/1223934. DOI
Štubňová E, Hodálová I, Kučera J, Mártonfiová L, Svitok M, Slovák M.. 2017. Karyological patterns in the European endemic genus Soldanella L.: absolute genome size variation uncorrelated with cytotype chromosome numbers. American Journal of Botany 104: 1241–1253. doi:10.3732/ajb.1700153. PubMed DOI
Suda J, Krahulcová A, Trávníček P, Krahulec F.. 2006. Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55: 447–450.
Tank DC, Eastman JM, Pennell MW, et al.. 2015. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytologist 207: 454–467. doi:10.1111/nph.13491. PubMed DOI
Temsch EM, Greilhuber J, Krisai R.. 2010. Genome size in liveworts. Preslia 82: 63–80.
Theodoridis S, Randin C, Broennimann O, Patsiou T, Conti E.. 2013. Divergent and narrower climatic niches characterize polyploid species of European primroses in Primula sect. Aleuritia. Journal of Biogeography 40: 1278–1289. doi:10.1111/jbi.12085. DOI
Topp EN, Loos J.. 2019. Local and landscape level variables influence butterfly diversity in critically endangered South African renosterveld. Journal of Insect Conservation 23: 225–237.
Trávníček P, Eliášová A, Suda J.. 2010. The distribution of cytotypes of Vicia cracca in Central Europe: the changes that have occurred over the last four decades. Preslia 82: 149–163.
Valentin S. 2022. geobuffer: geodesic buffer around points (long, lat) using metric radius. R package version 0.0.0.9000. https://github.com/valentinitnelav/geobuffer (date last accessed 4 April 2022).
Vít P, Krak K, Trávníček P, Douda J, Lomonosova MN, Mandák B.. 2016. Genome size stability across Eurasian Chenopodium species (Amaranthaceae). Botanical Journal of the Linnean Society 182: 637–649. doi:10.1111/boj.12474. DOI
Warren DL, Glor RE, Turelli M.. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 2868–2883. doi:10.1111/j.1558-5646.2008.00482.x. PubMed DOI
Warren DL, Glor RE, Turelli M.. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607–611.
Wu H, Ma Z, Wang M-M, Qin A-L, Ran J-H, Wang X-Q.. 2016. A high frequency of allopolyploid speciation in the gymnospermous genus Ephedra and its possible association with some biological and ecological features. Molecular Ecology 25: 1192–1210. doi:10.1111/mec.13538. PubMed DOI PMC
Wüest RO, Boucher FC, Bouchenak-Khelladi Y, Karger DN, Linder HP.. 2019. Dissecting biodiversity in a global hotspot: uneven dynamics of immigration and diversification within the Cape Floristic Region of South Africa. Journal of Biogeography 46: 1936–1947.