Intricate Distribution Patterns of Six Cytotypes of Allium oleraceum at a Continental Scale: Niche Expansion and Innovation Followed by Niche Contraction With Increasing Ploidy Level
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33362819
PubMed Central
PMC7755979
DOI
10.3389/fpls.2020.591137
Knihovny.cz E-zdroje
- Klíčová slova
- chromosome numbers, cytogeography, ecological niche, flow cytometry, geophytes, ploidy coexistence, polyploidy,
- Publikační typ
- časopisecké články MeSH
The establishment and success of polyploids are thought to often be facilitated by ecological niche differentiation from diploids. Unfortunately, most studies compared diploids and polyploids, ignoring variation in ploidy level in polyploids. To fill this gap, we performed a large-scale study of 11,163 samples from 1,283 populations of the polyploid perennial geophyte Allium oleraceum with reported mixed-ploidy populations, revealed distribution ranges of cytotypes, assessed their niches and explored the pattern of niche change with increasing ploidy level. Altogether, six ploidy levels (3x-8x) were identified. The most common were pentaploids (53.6%) followed by hexaploids (22.7%) and tetraploids (21.6%). Higher cytotype diversity was found at lower latitudes than at higher latitudes (>52° N), where only tetraploids and pentaploids occurred. We detected 17.4% of mixed-ploidy populations, usually as a combination of two, rarely of three, cytotypes. The majority of mixed-ploidy populations were found in zones of sympatry of the participating cytotypes, suggesting they have arisen through migration (secondary contact zone). Using coarse-grained variables (climate, soil), we found evidence of both niche expansion and innovation in tetraploids related to triploids, whereas higher ploidy levels showed almost zero niche expansion, but a trend of increased niche unfilling of tetraploids. Niche unfilling in higher ploidy levels was caused by a contraction of niche envelopes toward lower continentality of the climate and resulted in a gradual decrease of niche breadth and a gradual shift in niche optima. Field-recorded data indicated wide habitat breadth of tetraploids and pentaploids, but also a pattern of increasing synanthropy in higher ploidy levels. Wide niche breadth of tetra- and pentaploids might be related to their multiple origins from different environmental conditions, higher "age", and retained sexuality, which likely preserve their adaptive potential. In contrast, other cytotypes with narrower niches are mostly asexual, probably originating from a limited range of contrasting environments. Persistence of local ploidy mixtures could be enabled by the perenniality of A. oleraceum and its prevalence of vegetative reproduction, facilitating the establishment and decreasing exclusion of minority cytotype due to its reproductive costs. Vegetative reproduction might also significantly accelerate colonization of new areas, including recolonization of previously glaciated areas.
Department of Geoinformatics Faculty of Science Palacký University Olomouc Czechia
Institute of Botany Czech Academy of Sciences Pruhonice Czechia
Zobrazit více v PubMed
Åström H., Hæggström C. A., Hæggström E. (2015). Geographical distribution of Allium oleraceum cytotypes in Finland and Sweden. Nord. J. Bot. 33, 120–125. 10.1111/njb.00521 DOI
Adams K. L., Wendel J. F. (2005). Novel patterns of gene expression in polyploid plants. Trends Genet. 21, 539–543. 10.1016/j.tig.2005.07.009 PubMed DOI
Aedo C. (2013). “Allium L.,” in Flora Ibérica. Vol. XX. Liliaceae-Agavaceae, eds Rico E., Crespo M. B., Quintanar A., Herrero A., Aedo C. (Madrid: Consejo Superior de Investigaciones Cientificas; ), 220–273.
Afonso A., Loureiro J., Arroyo J., Olmedo-Vicente E., Castro S. (2020). Cytogenetic diversity in the polyploid complex Linum suffruticosum s.l. (Linaceae). Bot. J. Linn. Soc. boaa060 10.1093/botlinnean/boaa060 DOI
Aiello-Lammens M. E., Boria R. A., Radosavljevic A., Vilela B., Anderson R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545. 10.1111/ecog.01132 DOI
Araújo M. B., Ferri-Yáñez F., Bozinovic F., Marquet P. A., Valladares F., Chown S. L. (2013). Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219. 10.1111/ele.12155 PubMed DOI
Arrigo N., de La Harpe M., Litsios G., Zozomová-Lihová J., Španiel S., Marhold K., et al. . (2016). Is hybridization driving the evolution of climatic niche in Alyssum montanum? Am. J. Bot. 103, 1348–1357. 10.3732/ajb.1500368 PubMed DOI
Asker S. E., Jerling L. (1992). Apomixis in Plants. Florida, FL: CRC Press, Boca Raton.
Baker H. G. (1967). Support for Baker's law–as a rule. Evolution 21, 853–856. 10.1111/j.1558-5646.1967.tb03440.x PubMed DOI
Balao F., Casimiro-Soriguer R., Talavera M., Herrera J., Talavera S. (2009). Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations. Ann. Bot. 104, 965–973. 10.1093/aob/mcp182 PubMed DOI PMC
Balao F., Herrera J., Talavera S. (2011). Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach. New Phytol. 192, 256–265. 10.1111/j.1469-8137.2011.03787.x PubMed DOI
Baniaga A. E., Marx H. E., Arrigo N., Barker M. S. (2020). Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol. Lett. 23, 68–78. 10.1111/ele.13402 PubMed DOI
Barker M. S., Arrigo N., Baniaga A. E., Li Z., Levin D. A. (2016). On the relative abundance of autopolyploids and allopolyploids. New Phytol. 210, 391–398. 10.1111/nph.13698 PubMed DOI
Barringer B. C. (2007). Polyploidy and self-fertilization in flowering plants. Am. J. Bot. 94, 1527–1533. 10.3732/ajb.94.9.1527 PubMed DOI
Bayer R. J., Stebbins G. L. (1987). Chromosome numbers, patterns of distribution, and apomixis in Antennaria (Asteraceae: Inuleae). Syst. Bot. 12, 305–319. 10.2307/2419326 DOI
Bennett M. D., Smith J. B. (1972). The effects of polyploidy on meiotic duration and pollen development in cereal anthers. Proc. Roy. Soc. Biol. Sci. Ser. B 181, 81–107. 10.1098/rspb.1972.0041 DOI
Bierzychudek P. (1985). Patterns in plant parthenogenesis. Experientia 41, 1255–1264. 10.1007/BF01952068 PubMed DOI
Bogdanović S., Brullo S., Mitić B., Salmeri C. (2008). A new species of Allium (Alliaceae) from Dalmatia, Croatia. Bot. J. Linn. Soc. 158, 106–114. 10.1111/j.1095-8339.2008.00790.x DOI
Bretagnole F., Thompson J. D. (1996). An experimental study of ecological differences in winter growth between sympatric diploid and autotetraploid Dactylis glomerata. J. Ecol. 84, 343–351. 10.2307/2261197 DOI
Brittingham H. A., Koski M. H., Ashman T.-L. (2018). Higher ploidy is associated with reduced range breadth in the Potentilleae tribe. Am. J. Bot. 105, 700–710. 10.1002/ajb2.1046 PubMed DOI
Brochmann C., Brysting A. K., Alsos I. G., Borgen L., Grundt H. H., Scheen A.-C., et al. (2004). Polyploidy in arctic plants. Biol. J. Linn. Soc. 82, 521–536. 10.1111/j.1095-8312.2004.00337.x DOI
Broennimann O., Fitzpatrick M. C., Pearman P. B., Petitpierre B., Pellissier L., Yoccoz N. G., et al. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497. 10.1111/j.1466-8238.2011.00698.x DOI
Broennimann O., Treier U., Müller-Schärer H., Thuiller W., Peterson A., Guisan A. (2007). Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709. 10.1111/j.1461-0248.2007.01060.x PubMed DOI
Brullo S., Guarino R. (2017). “Chapter 7: Allium L. -Aglio (incl. cipolla, porro),” in Flora d'Italia, Seconda Edizione, eds Pignatti S., Guarino R., La Rosa M. (Bologna: Edagricole di New Business Media; ), 238–269.
Brullo S., Guglielmo A., Pavone P., Salmeri C. (2008). Taxonomic study on Allium dentiferum Webb & Berthel. (Alliaceae) and its relations with allied species from the Mediterranean. Taxon 57, 243–253. 10.2307/25065965 DOI
Brullo S., Guglielmo A., Pavone P., Scelsi F., Terrasi M. C. (1996a). Cytotaxonomic consideration of Allium fuscum Waldst. et Kit. (Liliaceae), a critical species of the European flora. Folia Geobot. Phytotax. 31, 465–472. 10.1007/BF02812087 DOI
Brullo S., Pavone P., Salmeri C. (1996b). Considerazioni citotassonomische su Allium pallens L. (Alliaceae), specie critica del Mediterraneo. Inform. Bot. Ital. 27:309.
Brullo S., Pavone P., Sameri C. (1997). Allium oporinanthum (Alliaceae), a new species from the NW Mediterranean area. Anales Jard. Bot. Madrid 55, 297–302. 10.3989/ajbm.1997.v55.i2.276 DOI
Brullo S., Guglielmo A., Pavone P., Salmeri C. (2001). Osservazioni tassonomiche e cariologiche sulle specie del ciclo di Allium paniculatum L. in Italia. Inform. Bot. Ital. 33, 500–506.
Brullo S., Guglielmo A., Pavone P., Salmeri C. (2003). Cytotaxonomical remarks on Allium pallens and its relationships with A. convallarioides (Alliaceae). Bocconea 16, 557–571.
Castro M., Loureiro J., Figueiredo A., Serrano M., Husband B. C., Castro S. (2020). Different patterns of ecological divergence between two tetraploids and their diploid counterpart in a parapatric linear coastal distribution polyploid complex. Front. Plant Sci. 11:315 10.3389/fpls.2020.00315 PubMed DOI PMC
Čeřovský J., Feráková V., Holub J., Maglocký Š., Procházka F. (eds.). (1999). Cervená kniha ohrožených a vzácných druhu rostlin a Živočichu° ČR a SR. Vol. 5. Vyšší rostliny. Bratislava. Príroda.
Čertner M., Fenclová E., Kúr P., Kolář F., Koutecký P., Krahulcová A., et al. . (2017). Evolutionary dynamics of mixed-ploidy populations in an annual herb: dispersal, local persistence and recurrent origins of polyploids. Ann. Bot. 120, 303–315. 10.1093/aob/mcx032 PubMed DOI PMC
Čertner M., Kúr P., Kolář F., Suda J. (2019). Climatic conditions and human activities shape diploid–tetraploid coexistence at different spatial scales in the common weed Tripleurospermum inodorum (Asteraceae). J. Biogeogr. 46, 1355–1366. 10.1111/jbi.13629 DOI
Chung M. Y., López-Pujol J., Chung J. M., Kim K.-J., Park S. J., Chung M. G. (2015). Polyploidy in Lilium lancifolium: evidence of autotriploidy and no niche divergence between diploid and triploid cytotypes in their native ranges. Flora 213, 57–68. 10.1016/j.flora.2015.04.002 DOI
Ciocârlan V. (2000). Flora ilustrată a României. Bucureşti: Edit Ceres.
Cires E., Cuesta C., Revilla M. A., Prieto J. A. D. (2010). Intraspecific genome size variation and morphological differentiation of Ranunculus parnassifolius (Ranunculaceae), an alpine–pyrenean–cantabrian polyploid group. Biol. J. Linn. Soc. 101:251–271. 10.1111/j.1095-8312.2010.01517.x DOI
Cosendai A. C., Wagner J., Ladinig U., Rosche C., Hörandl E. (2013). Geographical parthenogenesis and population genetic structure in the alpine species Ranunculus kuepferi (Ranunculaceae). Heredity 110, 560–569. 10.1038/hdy.2013.1 PubMed DOI PMC
Costa J., Ferrero V., Louriero J., Castro M., Navarro L., Castro S. (2014). Sexual reproduction of the pentaploid, short-styled Oxalis pes-caprae allows the production of viable offspring. Plant Biol. 16:208–214. 10.1111/plb.12010 PubMed DOI
Decanter L., Colling G., Elvinger N., Heiðmarsson S., Matthies D. (2020). Ecological niche differences between two polyploid cytotypes of Saxifraga rosacea. Am. J. Bot. 107, 423–435. 10.1002/ajb2.1431 PubMed DOI PMC
Di Cola V., Broennimann O., Petitpierre B., Breiner F. T., D'Amen M., Randin C., et al. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787. 10.1111/ecog.02671 DOI
Dobrotchaeva D. N., Kotov M. I., Prokudin J. N. (eds.). (1999). Opredetitel' Vyssich Rastenij Ukrainy. Kiev: Institute of Botany.
Doležel J., Greilhuber J., Suda J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244. 10.1038/nprot.2007.310 PubMed DOI
Dormann C. F., Elith J., Bacher S., Buchmann C., Carl G., Carré G., et al. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46. 10.1111/j.1600-0587.2012.07348.x DOI
Doyle J. J., Flagel L. E., Paterson A. H., Rapp R. A., Soltis D. E., Soltis P. S., et al. . (2008). Evolutionary genetics of genome merger and doubling in plants. Ann. Rev. Genet. 42, 443–461. 10.1146/annurev.genet.42.110807.091524 PubMed DOI
Duchoslav M., Fialová M., Jandová M. (2017). The ecological performance of tetra-, penta- and hexaploid geophyte Allium oleraceum in reciprocal transplant experiment may explain the occurrence of multiple-cytotype populations. J. Plant Ecol. 10:569–580. 10.1093/jpe/rtw039 DOI
Duchoslav M., Šafářová L., Jandová M. (2013). Role of adaptive and non-adaptive mechanisms forming complex patterns of genome size variation in six cytotypes of polyploid Allium oleraceum (Amaryllidaceae) on a continental scale. Ann. Bot. 111, 419–431. 10.1093/aob/mcs297 PubMed DOI PMC
Duchoslav M., Šafářová L., Krahulec F. (2010). Complex distribution patterns, ecology and coexistence of ploidy levels of Allium oleraceum (Alliaceae) in the Czech Republic. Ann. Bot. 105, 719–735. 10.1093/aob/mcq035 PubMed DOI PMC
Duchoslav M., Staňková H. (2015). The population genetic structure and clonal diversity of Allium oleraceum (Amaryllidaceae), a polyploid geophyte with common asexual but variable sexual reproduction. Folia Geobot. 50, 123–136. 10.1007/s12224-015-9213-0 DOI
Duchoslav M. (2001). Allium oleraceum and A. vineale in the Czech Republic: distribution and habitat differentiation. Preslia 73, 173–184.
Duchoslav M. (2009). Effects of contrasting habitats on the phenology, seasonal growth, and dry-mass allocation pattern of two bulbous geophytes (Alliaceae) with partly different geographic ranges. Pol. J. Ecol. 57, 15–32.
Fialová M., Duchoslav M. (2014). Response to competition of bulbous geophyte Allium oleraceum differing in ploidy levels. Plant Biol. 16, 186–196. 10.1111/plb.12042 PubMed DOI
Fialová M., Jandová M., Ohryzek J., Duchoslav M. (2014). Biology of the polyploid geophyte Allium oleraceum (Amaryllidaceae): variation in size, sexual and asexual reproduction and germination within and between tetra-, penta- and hexaploid cytotypes. Flora 209, 312–324. 10.1016/j.flora.2014.04.001 DOI
Fialová R. (1996). Polyploid complexes in the genus Allium (dissertation). Palacký University Olomouc, Olomouc, Czech Republic.
Fick S. E., Hijmans R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. 10.1002/joc.5086 DOI
Fowler N., Levin D. (1984). Ecological contrasts on the establishment of a novel polyploid in competition with its diploid progenitor. Am. Nat. 124, 703–711. 10.1086/284307 DOI
Fowler N. L., Levin D. A. (2016). Critical factors in the establishment of allopolyploids. Am. J. Bot. 103, 1236–1251. 10.3732/ajb.1500407 PubMed DOI
Friesen N., Fritsch R. M., Blattner F. (2006). Phylogeny and new intragenetic classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 22, 372–395. 10.5642/aliso.20062201.31 DOI
Gallagher J. P., Grover C. E., Hu G., Wendel J. F. (2016). Insights into the ecology and evolution of polyploid plants through network analysis. Molec. Ecol. 25, 2644–2660. 10.1111/mec.13626 PubMed DOI
Gaynor M. L., Marchant D. B., Soltis D. E., Soltis P. S. (2018). Climatic niche comparison among ploidal levels in the classic autopolyploid system, Galax urceolata. Am. J. Bot. 105, 1631–1642. 10.1002/ajb2.1161 PubMed DOI
Ghendov V. (2015). Notes on Allium paniculatum L. s. l. (Alliaceae Juss.) in the flora of Republic of Moldova. J. Bot. 7, 101–105.
Glennon K. L., Ritchie M. E., Segraves K. A. (2014). Evidence for shared broad-scale climatic niches of diploid and polyploid plants. Ecol. Lett. 17, 574–582. 10.1111/ele.12259 PubMed DOI
Godsoe W., Larson M. A., Glennon K. L., Segraves K. A. (2013). Polyploidization in Heuchera cylindrica (Saxifragaceae) did not result in a shift in climatic requirements. Am. J. Bot. 100, 496–508. 10.3732/ajb.1200275 PubMed DOI
Goldblatt P., Johnson D. E. (2010). Index to Plant Chromosome Numbers 2004-2006. Monographs in systematic botany. St. Louis, MO: Missouri Botanical Garden.
Grant V. (1981). Plant Speciation. New York, NY: Columbia University Press; 10.7312/gran92318 DOI
Guignard M. S., Leitch A. R., Acquisti C., Eizaguirre C., Elser J. J., Hessen D. O., et al. (2017). Impacts of nitrogen and phosphorus: from genomes to natural ecosystems and agriculture. Front. Ecol. Evol. 5:70 10.3389/fevo.2017.00070 DOI
Guignard M. S., Nichols R. A., Knell R. J., Macdonald A., Romila C. A., Trimmer M., et al. . (2016). Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation. New Phytol. 210, 1195–1206. 10.1111/nph.13881 PubMed DOI PMC
Guisan A., Petitpierre B., Broennimann O., Daehler C., Kueffer C. H. (2014). Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269. 10.1016/j.tree.2014.02.009 PubMed DOI
Guisan A., Thuiller W. (2005). Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009. 10.1111/j.1461-0248.2005.00792.x PubMed DOI
Gustafsson A. (1948). Polyploidy, life-form and vegetative reproduction. Hereditas 34, 1–22. 10.1111/j.1601-5223.1948.tb02824.x DOI
Hæggström C. A., Åström H. (2005). Allium oleraceum (Alliaceae) in Finland: distribution, habitats and accompanying vascular plant species. Mem. Soc. Fauna Flora Fenn. 81, 1–18.
Halverson K., Heard S. B., Nason J. D., Stireman J. O. (2008). Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae). Am. J. Bot. 95, 50–58. 10.3732/ajb.95.1.50 PubMed DOI
Han T. S., Zheng Q. J., Onstein R. E., Rojas-Andrés B. M., Hauenschild F., Muellner-Riehl A. N., et al. . (2020). Polyploidy promotes species diversification of Allium through ecological shifts. New Phytol. 225, 571–583. 10.1111/nph.16098 PubMed DOI
Hanelt P., Schultze-Motel J., Fritsch R., Kruse J., Maaß H. I., Ohle H., et al. (1992). “Infrageneric grouping of Allium – the gatersleben approach,” in The Genus Allium – Taxonomic Problems and Genetic Resources. eds Hanelt P., Hammer K., Knüpffer H. Proceedings of the International Symposium (Gatersleben: Institute of Plant Genetics and Crop Plant Research Gatersleben; ), 107–123.
Hanušová K., Čertner M., Urfus T., Koutecký P., Košnar J., Rothfels C. J., et al. . (2019). Widespread co-occurrence of multiple ploidy levels in fragile ferns (Cystopteris fragilis complex; Cystopteridaceae) probably stems from similar ecology of cytotypes, their efficient dispersal and inter-ploidy hybridization. Ann. Bot. 123, 845–855. 10.1093/aob/mcy219 PubMed DOI PMC
Hegarty M. J., Hiscock S. J. (2008). Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 18, 435–444. 10.1016/j.cub.2008.03.043 PubMed DOI
Hengl T., de Jesus J. M., Heuvelink G. B. M., Gonzalez M. R., Kilibarda M., Blagotić A., et al. . (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12:e0169748. 10.1371/journal.pone.0169748 PubMed DOI PMC
Hengl T., de Jesus J. M., MacMillan R. A., Batjes N. H., Heuvelink G. B. M., Ribeiro E., et al. . (2014). SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9:e105992. 10.1371/journal.pone.0105992 PubMed DOI PMC
Herben T., Suda J., Klimešová J. (2017). Polyploid species rely on vegetative reproduction more than diploids: a re-examination of the old hypothesis. Ann. Bot. 120, 341–349. 10.1093/aob/mcx009 PubMed DOI PMC
Hewitt G. M. (1999). Postglacial recolonization of European biota. Biol. J. Linn. Soc. 68, 87–112. 10.1111/j.1095-8312.1999.tb01160.x DOI
Hijmans R. J., van Etten J., Cheng J., Mattiuzzi M., Sumner M., Greenberg J. A., et al. (2017). Package ‘raster’. Available online at: https://cran.r-project.org/package=raster (accessed October 06, 2020).
Hintze J. (2013). NCSS 9. NCSS, LLC. Kaysville, UT. Available online at: www.ncss.com (accessed October 06, 2020).
Hojsgaard D., Hörandl E. (2019). The rise of apomixis in natural plant populations. Front. Plant Sci. 10, 358–358. 10.3389/fpls.2019.00358 PubMed DOI PMC
Hörandl E. (2006). The complex causality of geographical parthenogenesis. New Phytol. 171, 525–538. 10.1111/j.1469-8137.2006.01769.x PubMed DOI
Hörandl E. (2009). A combinational theory for maintenance of sex. Heredity 103, 445–457. 10.1038/hdy.2009.85 PubMed DOI PMC
Huntley B., Birks H. J. B. (1983). An atlas of Past and Present Pollen Maps for Europe. Cambridge: Cambridge University Press.
Husband B. C., Baldwin S. J., Suda J. (2013). “The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes,” in Flow Cytometry With Plant Cells: Analysis of Genes, Chromosomes and Genomes, eds Doležel J., Greilhuber J., Suda J. (Weinheim: Wiley-VCH; ), 255–276. 10.1007/978-3-7091-1160-4_16 DOI
Jauzein P., Tison J. M. (2001). Étude analytique du genre Allium L. sous-genre Codonoprasum (Reichenb) zahar section Codonoprasum Rechenb en France. J. Bot. Soc. Bot. France 15, 29–50.
Ježilová E., Nožková-Hlaváčková V., Duchoslav M. (2015), Photosynthetic characteristics of of three ploidy levels of Allium oleraceum L. (Amaryllidaceae) differing in ecological amplitude. Plant Spec. Biol. 30, 212–224. 10.1111/1442-1984.12053 DOI
Jiao Y., Wickett N. J., Ayyampalayam S., Chanderbali A. S., Landherr L., Ralph P. E., et al. . (2011). Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100. 10.1038/nature09916 PubMed DOI
Jírová A. (2007). Reproductive biology and phenology of allium oleraceum polyploid complex (MSc thesis). Palacký University Olomouc, Olomouc, Czech Republic.
Johnson A. L., Govindarajulu R., Ashman T.-L. (2014). Bioclimatic evaluation of geographical range in Fragaria (Rosaceae): consequences of variation in breeding system, ploidy and species age. Bot. J. Linn. Soc. 176, 99–114. 10.1111/boj.12190 DOI
Kao R. H. (2007). Asexuality and coexistence of cytotypes. New Phytol. 175, 764–772. 10.1111/j.1469-8137.2007.02145.x PubMed DOI
Kao R. H. (2008). Origins and widespread distribution of co-existing polyploids in Arnica cordifolia (Asteraceae). Ann. Bot. 101, 145–152. 10.1093/aob/mcm271 PubMed DOI PMC
Karpavičienė B. (2007). Chromosome numbers of Allium from Lithuania. Ann. Bot. Fenn. 44, 345–352.
Karpavičienė B. (2012). Morphological, reproductive and karyological variability in Allium oleraceum in Lithuania. Biologia 67, 278–283. 10.2478/s11756-012-0003-3 DOI
Karpavičienė B., Karanauskaitė D. (2010). Variation in reproductive modes of Allium oleraceum, A. scorodoprasum and A. vineale in field collection. Acta Biologica Universitatis Daugavpiliensis 10, 1–9.
Karunarathne P., Schedler M., Martínez E. J., Honfi A. I., Novichkova A., Hojsgaard D. (2018). Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids. Ann. Bot. 121, 1183–1196. 10.1093/aob/mcy004 PubMed DOI PMC
Kearney M. (2005). Hybridization, glaciation and geographical parthenogenesis. Trends Ecol. Evol. 20, 495–502. 10.1016/j.tree.2005.06.005 PubMed DOI
Kirchheimer B., Schinkel C. C. F., Dellinger A. S., Klatt S., Moser D., Winkler M., et al. . (2016). A matter of scale: apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. J. Biogeogr. 43, 716–726. 10.1111/jbi.12663 PubMed DOI PMC
Kliber A., Eckert C. G. (2005). Interaction between founder effect and selection during biological invasion in an aquatic plant. Evolution 59, 1900–1913. 10.1554/05-253.1 PubMed DOI
Kolář F., Čertner M., Suda J., Schönswetter P., Husband B. C. (2017). Mixed-ploidy species: progress and opportunities in polyploid research. Trends Plant Sci. 22, 1041–1055. 10.1016/j.tplants.2017.09.011 PubMed DOI
Kolář F., Lučanová M., Záveská E., Fuxová G., Mandáková T., Španiel S., et al. (2016). Ecological segregation does not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of the Arabidopsis arenosa group (Brassicaceae), Biol. J. Linn. Soc. 119, 673–688. 10.1111/bij.12479 DOI
Krahulcová A., Jarolímová V. (1993). Ecology of two cytotypes of Butomus umbellatus I. Karyology and breeding behaviour. Folia Geobot. Phytotax. 28, 385–411. 10.1007/BF02853305 DOI
Krejčíková J., Sudová R., Lučanová M., Trávníček P., Urfus T., Vít P., et al. . (2013). High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of Oxalis in the greater cape floristic region. Ann. Bot. 111, 641–649. 10.1093/aob/mct030 PubMed DOI PMC
Laport R. G., Hatem L., Minckley R. L., Ramsey J. (2013). Ecological niche modeling implicates climatic adaptation, competitive exclusion, and niche conservatism among Larrea tridentata cytotypes in North American deserts. J. Torrey Bot. Soc. 140, 349–364. 10.3159/TORREY-D-13-00009.1 DOI
Legendre P., Anderson M. J. (1999). Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24. 10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2 DOI
Legendre P., Legendre L. (1998). Numerical Ecology. 2nd Edn. Amsterdam: Elsevier.
Leitch A. R., Leitch I. J. (2008). Genomic plasticity and the diversity of polyploid plants. Science 320, 481–483. 10.1126/science.1153585 PubMed DOI
Leitch I. J., Chase M. W., Bennett M. D. (1998). Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann. Bot. 82, 85–94. 10.1006/anbo.1998.0783 DOI
Levan A. (1933). Cytological studies in Allium, III Allium carinatum and Allium oleraceum. Hereditas 18, 101–114. 10.1111/j.1601-5223.1933.tb02602.x DOI
Levan A. (1937). Cytological studies in Allium paniculatum group. Hereditas 23, 317–370. 10.1111/j.1601-5223.1937.tb02671.x DOI
Levin D. A. (1975). Minority cytotype exclusion in local plant populations. Taxon 24, 35–43. 10.2307/1218997 DOI
Levin D. A. (2002). The Role of Chromosomal Change in Plant Evolution. Oxford: Oxford University Press.
Levin D. A. (2020). Has the polyploid wave ebbed? Front. Plant Sci. 11:251. 10.3389/fpls.2020.00251 PubMed DOI PMC
Lewis W. H. (1967). Cytocatalytic evolution in plants. Bot. Rev. 33, 105–115. 10.1007/BF02858665 DOI
Lewis W. H. (1980). Polyploidy, Biological Relevance. New York, NY: Plenum Press; 10.1007/978-1-4613-3069-1 DOI
Lindgren A., Hugelius G., Kuhry P., Christensen T. R., Vandenberghe J. (2016). GIS-based maps and area estimates of northern hemisphere permafrost extent during the last glacial maximum. Permafrost Periglac. Process. 27, 6–16. 10.1002/ppp.1851 DOI
Lo E. Y. Y., Stefanović S., Dickinson T. A. (2013). Geographical parthenogenesis in Pacific Northwest hawthorns (Crataegus; Rosaceae). Botany 91, 107–116. 10.1139/cjb-2012-0073 DOI
López-Jurado J., Mateos-Naranjo E., Balao F. (2019). Niche divergence and limits to expansion in the high polyploid Dianthus broteri complex. New Phytol. 222, 1076–1087. 10.1111/nph.15663 PubMed DOI
Mandáková T., Münzbergová Z. (2006). Distribution and ecology of Aster amellus aggregates in the Czech republic. Ann. Bot. 98, 845–856. 10.1093/aob/mcl165 PubMed DOI PMC
Manzaneda A. J., Rey P. J., Bastida J. M., Weiss-Lehman C., Raskin E., Mitchell-Olds T. (2012). Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytol. 193, 797–805. 10.1111/j.1469-8137.2011.03988.x PubMed DOI PMC
Marchant D. B., Soltis D. E., Soltis P. S. (2016). Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytol. 212, 708–718. 10.1111/nph.14069 PubMed DOI
Marhold K., Kudoh H., Pak J.-H., Watanabe K., Španiel S., Lihová J. (2010). Cytotype diversity and genome size variation in eastern Asian polyploid Cardamine (Brassicaceae) species. Ann. Bot. 105, 249–264. 10.1093/aob/mcp282 PubMed DOI PMC
Martin S. L., Husband B. (2009). Influence of phylogeny and ploidy on species ranges of North American angiosperms. J. Ecol. 97, 913–922. 10.1111/j.1365-2745.2009.01543.x DOI
McAllister C., Blaine R., Kron P., Bennett B., Garrett H., Kidson J., et al. . (2015). Environmental correlates of cytotype distribution in Andropogon gerardii (Poaceae). Am. J. Bot. 102, 92–102. 10.3732/ajb.1400296 PubMed DOI
McCormack J. E., Zellmer A. J., Knowles L. L. (2010). Does niche divergence accompany allopatric divergence in Aphelocoma Jays as predicted under ecological speciation?: insights from tests with niche models. Evolution 64, 1231–1244. 10.1111/j.1558-5646.2009.00900.x PubMed DOI
McCune B., Keon D. (2002). Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603–606. 10.1111/j.1654-1103.2002.tb02087.x DOI
McIntyre P. J. (2012). Polyploidy associated with altered and broader ecological niches in the Claytonia perfoliata (Portulacaceae) species complex. Am. J. Bot. 99, 655–662. 10.3732/ajb.1100466 PubMed DOI
Médail F., Diadema K. (2009). Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36, 1333–1345. 10.1111/j.1365-2699.2008.02051.x DOI
Meusel H., Jäger E., Weinert E. (1965). Vergleichende Chorologie der zentraleuropäischen Flora. Jena: Gustav Fischer Verlag.
Mock K. E., Callahan C. M., Islam-Faridi M. N., Shaw J. D., Rai H. S., et al. . (2012). Widespread triploidy in western north american aspen (Populus tremuloides). PLoS ONE 7:e48406. 10.1371/journal.pone.0048406 PubMed DOI PMC
Mráz P., Ronikier M. (2016). Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559. 10.1111/bij.12918 DOI
Mucina L., Bültmann H., Dierßen K., Theurillat J.-P., Raus T., Carni A., et al. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl. Veg. Sci. 19, 3–264. 10.1111/avsc.12257 DOI
Muñoz-Pajares A. J., Perfectti F., Loureiro J., Abdelaziz M., Biella P., Castro M., et al. (2018). Niche differences may explain the geographic distribution of cytotypes in Erysimum mediohispanicum. Plant Biol. 20, 139–147. 10.1111/plb.12605 PubMed DOI
Němečková H., Krak K., Chrtek J. (2019). Complex pattern of ploidal and genetic variation in Seseli libanotis (Apiaceae). Ann. Bot. Fenn. 56, 57–77. 10.5735/085.056.0111 DOI
Otto S. P., Whitton J. (2000). Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437. 10.1146/annurev.genet.34.1.401 PubMed DOI
Pandit M. K., Pocock M. J. O., Kunin W. E. (2011). Ploidy influences rarity and invasiveness in plants. J. Ecol. 99, 1108–1115. 10.1111/j.1365-2745.2011.01838.x DOI
Pandit M. K., Tan H. T. W., Bisht M. S. (2006). Polyploidy in invasive plant species of Singapore. Bot. J. Linn. Soc. 151, 395–403. 10.1111/j.1095-8339.2006.00515.x DOI
Pandit M. K., White S. M., Pocock M. J. O. (2014). The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol. 203, 697–703. 10.1111/nph.12799 PubMed DOI
Parisod C., Holderegger R., Brochmann C. (2010). Evolutionary consequences of autopolyploidy. New Phytol. 186, 5–17. 10.1111/j.1469-8137.2009.03142.x PubMed DOI
Pastor J., Valdés B. (1983). Revisión del género Allium (Liliaceae) en peninsula Ibérica e Islas Baleares. Sevilla: Universidad de Sevilla Press.
Paule J., Sharbel T. F., Dobeš C. (2011). Apomictic and sexual lineages of the Potentilla argentea L. group (Rosaceae) – cytotype and molecular genetic differentiation. Taxon 60, 721–732. 10.1002/tax.603008 DOI
Peruzzi L., Carta A., Altinordu F. (2017). Chromosome diversity and evolution in Allium (Allioideae, Amaryllidaceae). Plant Biosyst. 151, 212–220. 10.1080/11263504.2016.1149123 DOI
Petit C., Bretagnolle F., Felber F. (1999). Evolutionary consequences of diploid-polyploid hybrid zones in wild species. Trends Ecol. Evol. 14, 306–311. 10.1016/S0169-5347(99)01608-0 PubMed DOI
Petitpierre B., Kueffer C., Broennimann O., Randin C., Daehler C., Guisan A. (2012). Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348. 10.1126/science.1215933 PubMed DOI
R Development Core Team (2014). A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Ramsey J. (2011). Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. U.S.A. 108, 7096–7101. 10.1073/pnas.1016631108 PubMed DOI PMC
Ramsey J., Ramsey T. S. (2014). Ecological studies of polyploidy in the 100 years following its discovery. Philos. Trans. R. Soc. B Biol. Sci. 369:20130352. 10.1098/rstb.2013.0352 PubMed DOI PMC
Ramsey J., Schemske D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29, 467–501. 10.1146/annurev.ecolsys.29.1.467 DOI
Ramsey J., Schemske D. W. (2002). Neopolyploidy in flowering plants. Annu. Rev. Ecol. Evol. Syst. 33, 589–639. 10.1146/annurev.ecolsys.33.010802.150437 DOI
Rausch J., Morgan M. T. (2005). The effects of self-fertilization, inbreeding depression, and population size on autopolyploid establishment. Evolution 59, 1867–1875. 10.1554/05-095.1 PubMed DOI
Rejlová L., Chrtek J., Trávníček P., Lučanová M., Vít P., Urfus T. (2019). Polyploid evolution: the ultimate way to grasp the nettle. PLoS ONE 14:e0218389. 10.1371/journal.pone.0218389 PubMed DOI PMC
Rice A., Glick L., Abadi S., Einhorn M., Kopelman N. M., Salman-Minkov A., et al. . (2015). The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytol. 206, 19–26. 10.1111/nph.13191 PubMed DOI
Rice A., Šmarda P., Novosolov M., Drori M., Glick L., Sabath N., et al. . (2019). The global biogeography of polyploid plants. Nat. Ecol. Evol. 3, 265–273. 10.1038/s41559-018-0787-9 PubMed DOI
Rieseberg L. H., Willis J. H. (2007). Plant speciation. Science 317, 910–914. 10.1126/science.1137729 PubMed DOI PMC
Rojas-Andrés B. M., Padilla-García N., de Pedro M., López-González N., Delgado L., Albach D. C., et al. . (2020). Environmental differences are correlated with the distribution pattern of cytotypes in Veronica subsection Pentasepalae at a broad scale. Ann. Bot. 125, 471–484. 10.1093/aob/mcz182 PubMed DOI PMC
Ronsheim M. L. (1994). Dispersal distances and predation rates of sexual and asexual propagules of Allium vineale. Am. Midl. Nat. 131, 55–64. 10.2307/2426608 DOI
Šafářová L., Duchoslav M., Jandová M., Krahulec F. (2011). Allium oleraceum in Slovakia: cytotype distribution and ecology. Preslia 83, 513–527.
Šafářová L., Duchoslav M. (2010). Cytotype distribution in mixed populations of polyploid Allium oleraceum measured at a microgeographic scale. Preslia 82, 107–126.
Salmeri C., Brullo C., Brullo S., Giusso del Galdo G., Moysiyenko I. I. (2016). What is Allium paniculatum? Establishing taxonomic and molecular phylogenetic relationships within A. sect. Codonoprasum. J. Syst. Evol. 5, 123–135. 10.1111/jse.12170 DOI
Schinkel C. C. F., Kirchheimer B., Dellinger A. S., Klatt S., Winkler M., Dullinger S., et al. . (2016). Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant. AoB Plants 8:plw064. 10.1093/aobpla/plw064 PubMed DOI PMC
Schoener T. W. (1968). The anolis lizards of bimini: resource partitioning in a complex fauna. Ecology 49:704–726. 10.2307/1935534 DOI
Segraves K. A., Anneberg T. J. (2016). Species interactions and plant polyploidy. Am. J. Bot. 103, 1326–1335. 10.3732/ajb.1500529 PubMed DOI
Sheth S. N., Morueta-Holme N., Angert A. L. (2020). Determinants of geographic range size in plants. New Phytol. 226, 650–665. 10.1111/nph.16406 PubMed DOI
Šingliarová B., Zozomová-Lihová J., Mráz P. (2019). Polytopic origin and scale-dependent spatial segregation of cytotypes in primary diploid–autopolyploid contact zones of Pilosella rhodopea (Asteraceae). Biol. J. Linn. Soc. 126, 360–379. 10.1093/biolinnean/bly199 DOI
Šmarda P., Hejcman M., Brezinová A., Horová L., Steigerová H., Zedek F., et al. . (2013). Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment. New Phytol. 200, 911–921. 10.1111/nph.12399 PubMed DOI
Solhaug E. M., Ihinger J., Jost M., Gamboa V., Marchant B., Bradford D., et al. . (2016). Environmental regulation of heterosis in the allopolyploid Arabidopsis suecica. Pl. Physiol. 170, 2251–2263. 10.1104/pp.16.00052 PubMed DOI PMC
Soltis D. E., Buggs R. J. A., Doyle J. J., Soltis P. S. (2010). What we still don't know about polyploidy. Taxon 59, 1387–1403. 10.1002/tax.595006 DOI
Soltis D. E., Soltis P. S. (1999). Polyploidy: recurrent formation and genome evolution. Trends Ecol. Evol. 14, 348–352. 10.1016/S0169-5347(99)01638-9 PubMed DOI
Soltis D. E., Soltis P. S., Tate J. A. (2004). Advances in the study of polyploidy since Plant speciation. New Phytol. 161, 173–191. 10.1046/j.1469-8137.2003.00948.x DOI
Soltis D. E., Visger C. J., Marchant D. B., Soltis P. S. (2016). Polyploidy: pitfalls and paths to a paradigm. Am. J. Bot. 103, 1146–1166. 10.3732/ajb.1500501 PubMed DOI
Soltis P. S., Soltis D. E. (1995). The dynamic nature of polyploid genomes. Proc. Natl. Acad. Sci. U.S.A. 92, 8089–8091. 10.1073/pnas.92.18.8089 PubMed DOI PMC
Soltis P. S., Soltis D. E. (2000). The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U.S.A. 97, 7051–7057. 10.1073/pnas.97.13.7051 PubMed DOI PMC
Soltis P. S., Soltis D. E. (eds.). (2012). Polyploidy and Genome Evolution. Berlin: Springer-Verlag; 10.1007/978-3-642-31442-1 DOI
Sonnleitner M., Flatscher R., García P. E., Rauchová J., Suda J., Schneeweiss G. M., et al. . (2010). Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Ann. Bot. 106, 967–977. 10.1093/aob/mcq192 PubMed DOI PMC
Stearn W. T. (1980). “Allium L.,” in Flora Europaea Vol. 5, eds Tutin T. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. M. (Cambridge: Cambridge University Press; ), 49–69.
Stebbins G. L. (1984). Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. Bot. Helv. 94, 1–13.
Stebbins G. L. (1985). Polyploidy, hybridization, and the invasion of new habitats. Ann. Missouri Bot. 72, 824–832. 10.2307/2399224 DOI
Stewart J. R., Lister A. M. (2001). Cryptic northern refugia and the origins of modern biota. Trends Ecol. Evol. 16, 608–613. 10.1016/S0169-5347(01)02338-2 DOI
Stewart J. R., Lister A. M., Barnes I., Dalén L. (2010). Refugia revisited: individualistic responses of species in space and time. Proc. Roy. Soc. B Biol. Sci. 277, 661–671. 10.1098/rspb.2009.1272 PubMed DOI PMC
Suda J., Krahulcová A., Trávníček P., Krahulec F. (2006). Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55, 447–450. 10.2307/25065591 DOI
Sutherland B. L., Galloway L. F. (2017). Postzygotic isolation varies by ploidy level within a polyploid complex. New Phytol. 213, 404–412. 10.1111/nph.14116 PubMed DOI
te Beest M., Le Roux J. J., Richardson D. M., Brysting A. K., Suda J., Kubešová M., et al. . (2012). The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 109, 19–45. 10.1093/aob/mcr277 PubMed DOI PMC
ter Braak C. J. F., Šmilauer P. (2012). CANOCO Reference Manual and User's Guide: Software for Ordination (Version 5.0). Wageningen: Biometris.
Theodoridis S., Randin C., Broennimann O., Patsiou T., Conti E. (2013). Divergent and narrower climatic niches characterize polyploid species of European primroses in Primula sect. Aleuritia. J. Biogeogr. 40, 1278–1289. 10.1111/jbi.12085 DOI
Thompson J., Lumaret R. (1992). The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol. Evol. 7, 302–307. 10.1016/0169-5347(92)90228-4 PubMed DOI
Tilquin A., Kokko H. (2016). What does the geography of parthenogenesis teach us about sex? Phil. Trans. R. Soc. B 371:20150538. 10.1098/rstb.2015.0538 PubMed DOI PMC
Tison J. M., de Foucault B. (2014). Flora Gallica. Flore de France. Mèze: Biotope.
Trabucco A., Zomer R. (2019). Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. 10.6084/m9.figshare.7504448.v3 PubMed DOI PMC
Trávníček P., Dočkalová Z., Rosenbaumová R., Kubátová B., Szelag Z., Chrtek J. (2011a). Bridging global and microregional scales: ploidy distribution in Pilosella echioides (Asteraceae) in central Europe. Ann. Bot. 107, 443–454. 10.1093/aob/mcq260 PubMed DOI PMC
Trávníček P., Kubátová B., Čurn V., Rauchová J., Krajníková E., Jersáková J., et al. . (2011b). Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Ann. Bot. 107, 77–87. 10.1093/aob/mcq217 PubMed DOI PMC
Trávníček P., Eliášová A., Suda J. (2010). The distribution of cytotypes of Vicia cracca in Central Europe: the changes that have occurred over the last four decades. Preslia 82, 149–163.
Treier U. A., Broennimann O., Normand S., Guisan A., Schaffner U., Steinger T., et al. . (2009). Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology 90:1366–1377. 10.1890/08-0420.1 PubMed DOI
Van de Peer Y., Mizrachi E., Marchal K. (2017). The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424. 10.1038/nrg.2017.26 PubMed DOI
van Dijk P., Hartog M., van Delden W. (1992). Single cytotype areas in autopolyploid Plantago media L. Biol. J. Linn. Soc. 46, 315–331. 10.1111/j.1095-8312.1992.tb00867.x DOI
Vandenberghe J., French H. M., Gorbunov A., Marchenko S., Velichko A. A., Jin H., et al. (2014). The last permafrost maximum (LPM) map of the Northern hemisphere: permafrost extent and mean annual air temperatures, 25-17 ka BP. Boreas 43, 652–666. 10.1111/bor.12070 DOI
Veselý P., Bureš P., Šmarda P., Pavlíček T. (2012). Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Ann. Bot. 109, 65–75. 10.1093/aob/mcr267 PubMed DOI PMC
Visger C. J., Germain-Aubrey C. C., Patel M., Sessa E. B., Soltis P. S., Soltis D. E. (2016). Niche divergence between diploid and autotetraploid Tolmiea. Am. J. Bot. 103, 1–11. 10.3732/ajb.1600130 PubMed DOI
Visser V., Molofsky J. (2015). Ecological niche differentiation of polyploidization is not supported by environmental differences among species in a cosmopolitan grass genus. Am. J. Bot. 102, 36–49. 10.3732/ajb.1400432 PubMed DOI
Vosa C. G. (1976). Heterochromatic banding patterns in Allium. II. Heterochromatin variation in species of the paniculatum group. Chromosoma 57, 119–133. 10.1007/BF00292911 DOI
Vrijenhoek R. C. (1994). Unisexual fish: model systems for studying ecology and evolution. Annu. Rev. Ecol. Syst. 25, 71–96. 10.1146/annurev.es.25.110194.000443 DOI
Vvedenskii A. (1935). “Genus Allium L.,” in Flora U.S.S.R., Vol.4, Liliiflorae and Microspermae, ed V. Komarov (Leningrad: Izdatelstvo Akademii Nauk SSSR; ), 112–280.
Warren D. L., Glor R. E., Turelli M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883. 10.1111/j.1558-5646.2008.00482.x PubMed DOI
Warren D. L., Glor R. E., Turelli M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. 10.1111/j.1600-0587.2009.06142.x DOI
Weiss-Schneeweiss H., Emadzade K., Jang T. S., Schneeweiss G. M. (2013). Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet. Genome Res. 140, 137–150. 10.1159/000351727 PubMed DOI PMC
Wendel J. (2000). Genome evolution in polyploids. Pl. Molec. Biol. 42, 225–249. 10.1023/A:1006392424384 PubMed DOI
Wiens J. J., Ackerly D. D., Allen A. P., Anacker B. L., Buckley L. B., Cornell H. V., et al. . (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324. 10.1111/j.1461-0248.2010.01515.x PubMed DOI
Wood T. E., Takebayashi N., Barker M. S., Mayrose I., Greenspoon P. B., Rieseberg L. H. (2009). The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. U.S.A. 106, 13875–13879. 10.1073/pnas.0811575106 PubMed DOI PMC
Wos G., Morkovská J., Bohutínská M., Šrámková G., Knotek A., Lučanová M., et al. . (2019). Role of ploidy in colonization of alpine habitats in natural populations of Arabidopsis arenosa. Ann. Bot. 124, 255–268. 10.1093/aob/mcz070 PubMed DOI PMC
Wu L.-L., Cui X.-K., Milne R. I., Sun Y.-S., Liu J.-Q. (2010). Multiple autopolyploidizations and range expansion of Allium przewalskianum Regel. (Alliaceae) in the Qinghai-Tibetan plateau. Molec. Ecol. 19, 1691–1704. 10.1111/j.1365-294X.2010.04613.x PubMed DOI
Yamauchi A., Hosokawa A., Nagata H., Shimoda M. (2004). Triploid bridge and role of parthenogenesis in the evolution of autopolyploidy. Am. Nat. 164, 101–112. 10.1086/421356 PubMed DOI
Yoo M.-J., Liu X., Pires J. C., Soltis P. S., Soltis D. E. (2014). Nonadditive gene expression in polyploids. Annu. Rev. Genet. 48, 485–517. 10.1146/annurev-genet-120213-092159 PubMed DOI
Zar J. H. (1996). Biostatistical Analysis. 4th Edn. New Jersey, NJ: Prentice Hall.
Zólyomi B., Fekete G. (1994). The pannonian loess steppe: differentiation in space and time. Abstr. Bot., 18, 29–41.
Zozomová-Lihová J., Krak K., Mandáková T., Shimizu K. K., Španiel S., Vít P., et al. . (2014). Multiple hybridization events in Cardamine (Brassicaceae) during the last 150 years: Revisiting a textbook example of neoallopolyploidy. Ann. Bot. 113, 817–830. 10.1093/aob/mcu012 PubMed DOI PMC
Temporal stability of spatial cytotype structure in mixed-ploidy populations of Centaurea stoebe