Intricate Distribution Patterns of Six Cytotypes of Allium oleraceum at a Continental Scale: Niche Expansion and Innovation Followed by Niche Contraction With Increasing Ploidy Level

. 2020 ; 11 () : 591137. [epub] 20201209

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33362819

The establishment and success of polyploids are thought to often be facilitated by ecological niche differentiation from diploids. Unfortunately, most studies compared diploids and polyploids, ignoring variation in ploidy level in polyploids. To fill this gap, we performed a large-scale study of 11,163 samples from 1,283 populations of the polyploid perennial geophyte Allium oleraceum with reported mixed-ploidy populations, revealed distribution ranges of cytotypes, assessed their niches and explored the pattern of niche change with increasing ploidy level. Altogether, six ploidy levels (3x-8x) were identified. The most common were pentaploids (53.6%) followed by hexaploids (22.7%) and tetraploids (21.6%). Higher cytotype diversity was found at lower latitudes than at higher latitudes (>52° N), where only tetraploids and pentaploids occurred. We detected 17.4% of mixed-ploidy populations, usually as a combination of two, rarely of three, cytotypes. The majority of mixed-ploidy populations were found in zones of sympatry of the participating cytotypes, suggesting they have arisen through migration (secondary contact zone). Using coarse-grained variables (climate, soil), we found evidence of both niche expansion and innovation in tetraploids related to triploids, whereas higher ploidy levels showed almost zero niche expansion, but a trend of increased niche unfilling of tetraploids. Niche unfilling in higher ploidy levels was caused by a contraction of niche envelopes toward lower continentality of the climate and resulted in a gradual decrease of niche breadth and a gradual shift in niche optima. Field-recorded data indicated wide habitat breadth of tetraploids and pentaploids, but also a pattern of increasing synanthropy in higher ploidy levels. Wide niche breadth of tetra- and pentaploids might be related to their multiple origins from different environmental conditions, higher "age", and retained sexuality, which likely preserve their adaptive potential. In contrast, other cytotypes with narrower niches are mostly asexual, probably originating from a limited range of contrasting environments. Persistence of local ploidy mixtures could be enabled by the perenniality of A. oleraceum and its prevalence of vegetative reproduction, facilitating the establishment and decreasing exclusion of minority cytotype due to its reproductive costs. Vegetative reproduction might also significantly accelerate colonization of new areas, including recolonization of previously glaciated areas.

Zobrazit více v PubMed

Åström H., Hæggström C. A., Hæggström E. (2015). Geographical distribution of Allium oleraceum cytotypes in Finland and Sweden. Nord. J. Bot. 33, 120–125. 10.1111/njb.00521 DOI

Adams K. L., Wendel J. F. (2005). Novel patterns of gene expression in polyploid plants. Trends Genet. 21, 539–543. 10.1016/j.tig.2005.07.009 PubMed DOI

Aedo C. (2013). “Allium L.,” in Flora Ibérica. Vol. XX. Liliaceae-Agavaceae, eds Rico E., Crespo M. B., Quintanar A., Herrero A., Aedo C. (Madrid: Consejo Superior de Investigaciones Cientificas; ), 220–273.

Afonso A., Loureiro J., Arroyo J., Olmedo-Vicente E., Castro S. (2020). Cytogenetic diversity in the polyploid complex Linum suffruticosum s.l. (Linaceae). Bot. J. Linn. Soc. boaa060 10.1093/botlinnean/boaa060 DOI

Aiello-Lammens M. E., Boria R. A., Radosavljevic A., Vilela B., Anderson R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545. 10.1111/ecog.01132 DOI

Araújo M. B., Ferri-Yáñez F., Bozinovic F., Marquet P. A., Valladares F., Chown S. L. (2013). Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219. 10.1111/ele.12155 PubMed DOI

Arrigo N., de La Harpe M., Litsios G., Zozomová-Lihová J., Španiel S., Marhold K., et al. . (2016). Is hybridization driving the evolution of climatic niche in Alyssum montanum? Am. J. Bot. 103, 1348–1357. 10.3732/ajb.1500368 PubMed DOI

Asker S. E., Jerling L. (1992). Apomixis in Plants. Florida, FL: CRC Press, Boca Raton.

Baker H. G. (1967). Support for Baker's law–as a rule. Evolution 21, 853–856. 10.1111/j.1558-5646.1967.tb03440.x PubMed DOI

Balao F., Casimiro-Soriguer R., Talavera M., Herrera J., Talavera S. (2009). Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations. Ann. Bot. 104, 965–973. 10.1093/aob/mcp182 PubMed DOI PMC

Balao F., Herrera J., Talavera S. (2011). Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach. New Phytol. 192, 256–265. 10.1111/j.1469-8137.2011.03787.x PubMed DOI

Baniaga A. E., Marx H. E., Arrigo N., Barker M. S. (2020). Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol. Lett. 23, 68–78. 10.1111/ele.13402 PubMed DOI

Barker M. S., Arrigo N., Baniaga A. E., Li Z., Levin D. A. (2016). On the relative abundance of autopolyploids and allopolyploids. New Phytol. 210, 391–398. 10.1111/nph.13698 PubMed DOI

Barringer B. C. (2007). Polyploidy and self-fertilization in flowering plants. Am. J. Bot. 94, 1527–1533. 10.3732/ajb.94.9.1527 PubMed DOI

Bayer R. J., Stebbins G. L. (1987). Chromosome numbers, patterns of distribution, and apomixis in Antennaria (Asteraceae: Inuleae). Syst. Bot. 12, 305–319. 10.2307/2419326 DOI

Bennett M. D., Smith J. B. (1972). The effects of polyploidy on meiotic duration and pollen development in cereal anthers. Proc. Roy. Soc. Biol. Sci. Ser. B 181, 81–107. 10.1098/rspb.1972.0041 DOI

Bierzychudek P. (1985). Patterns in plant parthenogenesis. Experientia 41, 1255–1264. 10.1007/BF01952068 PubMed DOI

Bogdanović S., Brullo S., Mitić B., Salmeri C. (2008). A new species of Allium (Alliaceae) from Dalmatia, Croatia. Bot. J. Linn. Soc. 158, 106–114. 10.1111/j.1095-8339.2008.00790.x DOI

Bretagnole F., Thompson J. D. (1996). An experimental study of ecological differences in winter growth between sympatric diploid and autotetraploid Dactylis glomerata. J. Ecol. 84, 343–351. 10.2307/2261197 DOI

Brittingham H. A., Koski M. H., Ashman T.-L. (2018). Higher ploidy is associated with reduced range breadth in the Potentilleae tribe. Am. J. Bot. 105, 700–710. 10.1002/ajb2.1046 PubMed DOI

Brochmann C., Brysting A. K., Alsos I. G., Borgen L., Grundt H. H., Scheen A.-C., et al. (2004). Polyploidy in arctic plants. Biol. J. Linn. Soc. 82, 521–536. 10.1111/j.1095-8312.2004.00337.x DOI

Broennimann O., Fitzpatrick M. C., Pearman P. B., Petitpierre B., Pellissier L., Yoccoz N. G., et al. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497. 10.1111/j.1466-8238.2011.00698.x DOI

Broennimann O., Treier U., Müller-Schärer H., Thuiller W., Peterson A., Guisan A. (2007). Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709. 10.1111/j.1461-0248.2007.01060.x PubMed DOI

Brullo S., Guarino R. (2017). “Chapter 7: Allium L. -Aglio (incl. cipolla, porro),” in Flora d'Italia, Seconda Edizione, eds Pignatti S., Guarino R., La Rosa M. (Bologna: Edagricole di New Business Media; ), 238–269.

Brullo S., Guglielmo A., Pavone P., Salmeri C. (2008). Taxonomic study on Allium dentiferum Webb & Berthel. (Alliaceae) and its relations with allied species from the Mediterranean. Taxon 57, 243–253. 10.2307/25065965 DOI

Brullo S., Guglielmo A., Pavone P., Scelsi F., Terrasi M. C. (1996a). Cytotaxonomic consideration of Allium fuscum Waldst. et Kit. (Liliaceae), a critical species of the European flora. Folia Geobot. Phytotax. 31, 465–472. 10.1007/BF02812087 DOI

Brullo S., Pavone P., Salmeri C. (1996b). Considerazioni citotassonomische su Allium pallens L. (Alliaceae), specie critica del Mediterraneo. Inform. Bot. Ital. 27:309.

Brullo S., Pavone P., Sameri C. (1997). Allium oporinanthum (Alliaceae), a new species from the NW Mediterranean area. Anales Jard. Bot. Madrid 55, 297–302. 10.3989/ajbm.1997.v55.i2.276 DOI

Brullo S., Guglielmo A., Pavone P., Salmeri C. (2001). Osservazioni tassonomiche e cariologiche sulle specie del ciclo di Allium paniculatum L. in Italia. Inform. Bot. Ital. 33, 500–506.

Brullo S., Guglielmo A., Pavone P., Salmeri C. (2003). Cytotaxonomical remarks on Allium pallens and its relationships with A. convallarioides (Alliaceae). Bocconea 16, 557–571.

Castro M., Loureiro J., Figueiredo A., Serrano M., Husband B. C., Castro S. (2020). Different patterns of ecological divergence between two tetraploids and their diploid counterpart in a parapatric linear coastal distribution polyploid complex. Front. Plant Sci. 11:315 10.3389/fpls.2020.00315 PubMed DOI PMC

Čeřovský J., Feráková V., Holub J., Maglocký Š., Procházka F. (eds.). (1999). Cervená kniha ohrožených a vzácných druhu rostlin a Živočichu° ČR a SR. Vol. 5. Vyšší rostliny. Bratislava. Príroda.

Čertner M., Fenclová E., Kúr P., Kolář F., Koutecký P., Krahulcová A., et al. . (2017). Evolutionary dynamics of mixed-ploidy populations in an annual herb: dispersal, local persistence and recurrent origins of polyploids. Ann. Bot. 120, 303–315. 10.1093/aob/mcx032 PubMed DOI PMC

Čertner M., Kúr P., Kolář F., Suda J. (2019). Climatic conditions and human activities shape diploid–tetraploid coexistence at different spatial scales in the common weed Tripleurospermum inodorum (Asteraceae). J. Biogeogr. 46, 1355–1366. 10.1111/jbi.13629 DOI

Chung M. Y., López-Pujol J., Chung J. M., Kim K.-J., Park S. J., Chung M. G. (2015). Polyploidy in Lilium lancifolium: evidence of autotriploidy and no niche divergence between diploid and triploid cytotypes in their native ranges. Flora 213, 57–68. 10.1016/j.flora.2015.04.002 DOI

Ciocârlan V. (2000). Flora ilustrată a României. Bucureşti: Edit Ceres.

Cires E., Cuesta C., Revilla M. A., Prieto J. A. D. (2010). Intraspecific genome size variation and morphological differentiation of Ranunculus parnassifolius (Ranunculaceae), an alpine–pyrenean–cantabrian polyploid group. Biol. J. Linn. Soc. 101:251–271. 10.1111/j.1095-8312.2010.01517.x DOI

Cosendai A. C., Wagner J., Ladinig U., Rosche C., Hörandl E. (2013). Geographical parthenogenesis and population genetic structure in the alpine species Ranunculus kuepferi (Ranunculaceae). Heredity 110, 560–569. 10.1038/hdy.2013.1 PubMed DOI PMC

Costa J., Ferrero V., Louriero J., Castro M., Navarro L., Castro S. (2014). Sexual reproduction of the pentaploid, short-styled Oxalis pes-caprae allows the production of viable offspring. Plant Biol. 16:208–214. 10.1111/plb.12010 PubMed DOI

Decanter L., Colling G., Elvinger N., Heiðmarsson S., Matthies D. (2020). Ecological niche differences between two polyploid cytotypes of Saxifraga rosacea. Am. J. Bot. 107, 423–435. 10.1002/ajb2.1431 PubMed DOI PMC

Di Cola V., Broennimann O., Petitpierre B., Breiner F. T., D'Amen M., Randin C., et al. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787. 10.1111/ecog.02671 DOI

Dobrotchaeva D. N., Kotov M. I., Prokudin J. N. (eds.). (1999). Opredetitel' Vyssich Rastenij Ukrainy. Kiev: Institute of Botany.

Doležel J., Greilhuber J., Suda J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244. 10.1038/nprot.2007.310 PubMed DOI

Dormann C. F., Elith J., Bacher S., Buchmann C., Carl G., Carré G., et al. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46. 10.1111/j.1600-0587.2012.07348.x DOI

Doyle J. J., Flagel L. E., Paterson A. H., Rapp R. A., Soltis D. E., Soltis P. S., et al. . (2008). Evolutionary genetics of genome merger and doubling in plants. Ann. Rev. Genet. 42, 443–461. 10.1146/annurev.genet.42.110807.091524 PubMed DOI

Duchoslav M., Fialová M., Jandová M. (2017). The ecological performance of tetra-, penta- and hexaploid geophyte Allium oleraceum in reciprocal transplant experiment may explain the occurrence of multiple-cytotype populations. J. Plant Ecol. 10:569–580. 10.1093/jpe/rtw039 DOI

Duchoslav M., Šafářová L., Jandová M. (2013). Role of adaptive and non-adaptive mechanisms forming complex patterns of genome size variation in six cytotypes of polyploid Allium oleraceum (Amaryllidaceae) on a continental scale. Ann. Bot. 111, 419–431. 10.1093/aob/mcs297 PubMed DOI PMC

Duchoslav M., Šafářová L., Krahulec F. (2010). Complex distribution patterns, ecology and coexistence of ploidy levels of Allium oleraceum (Alliaceae) in the Czech Republic. Ann. Bot. 105, 719–735. 10.1093/aob/mcq035 PubMed DOI PMC

Duchoslav M., Staňková H. (2015). The population genetic structure and clonal diversity of Allium oleraceum (Amaryllidaceae), a polyploid geophyte with common asexual but variable sexual reproduction. Folia Geobot. 50, 123–136. 10.1007/s12224-015-9213-0 DOI

Duchoslav M. (2001). Allium oleraceum and A. vineale in the Czech Republic: distribution and habitat differentiation. Preslia 73, 173–184.

Duchoslav M. (2009). Effects of contrasting habitats on the phenology, seasonal growth, and dry-mass allocation pattern of two bulbous geophytes (Alliaceae) with partly different geographic ranges. Pol. J. Ecol. 57, 15–32.

Fialová M., Duchoslav M. (2014). Response to competition of bulbous geophyte Allium oleraceum differing in ploidy levels. Plant Biol. 16, 186–196. 10.1111/plb.12042 PubMed DOI

Fialová M., Jandová M., Ohryzek J., Duchoslav M. (2014). Biology of the polyploid geophyte Allium oleraceum (Amaryllidaceae): variation in size, sexual and asexual reproduction and germination within and between tetra-, penta- and hexaploid cytotypes. Flora 209, 312–324. 10.1016/j.flora.2014.04.001 DOI

Fialová R. (1996). Polyploid complexes in the genus Allium (dissertation). Palacký University Olomouc, Olomouc, Czech Republic.

Fick S. E., Hijmans R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. 10.1002/joc.5086 DOI

Fowler N., Levin D. (1984). Ecological contrasts on the establishment of a novel polyploid in competition with its diploid progenitor. Am. Nat. 124, 703–711. 10.1086/284307 DOI

Fowler N. L., Levin D. A. (2016). Critical factors in the establishment of allopolyploids. Am. J. Bot. 103, 1236–1251. 10.3732/ajb.1500407 PubMed DOI

Friesen N., Fritsch R. M., Blattner F. (2006). Phylogeny and new intragenetic classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 22, 372–395. 10.5642/aliso.20062201.31 DOI

Gallagher J. P., Grover C. E., Hu G., Wendel J. F. (2016). Insights into the ecology and evolution of polyploid plants through network analysis. Molec. Ecol. 25, 2644–2660. 10.1111/mec.13626 PubMed DOI

Gaynor M. L., Marchant D. B., Soltis D. E., Soltis P. S. (2018). Climatic niche comparison among ploidal levels in the classic autopolyploid system, Galax urceolata. Am. J. Bot. 105, 1631–1642. 10.1002/ajb2.1161 PubMed DOI

Ghendov V. (2015). Notes on Allium paniculatum L. s. l. (Alliaceae Juss.) in the flora of Republic of Moldova. J. Bot. 7, 101–105.

Glennon K. L., Ritchie M. E., Segraves K. A. (2014). Evidence for shared broad-scale climatic niches of diploid and polyploid plants. Ecol. Lett. 17, 574–582. 10.1111/ele.12259 PubMed DOI

Godsoe W., Larson M. A., Glennon K. L., Segraves K. A. (2013). Polyploidization in Heuchera cylindrica (Saxifragaceae) did not result in a shift in climatic requirements. Am. J. Bot. 100, 496–508. 10.3732/ajb.1200275 PubMed DOI

Goldblatt P., Johnson D. E. (2010). Index to Plant Chromosome Numbers 2004-2006. Monographs in systematic botany. St. Louis, MO: Missouri Botanical Garden.

Grant V. (1981). Plant Speciation. New York, NY: Columbia University Press; 10.7312/gran92318 DOI

Guignard M. S., Leitch A. R., Acquisti C., Eizaguirre C., Elser J. J., Hessen D. O., et al. (2017). Impacts of nitrogen and phosphorus: from genomes to natural ecosystems and agriculture. Front. Ecol. Evol. 5:70 10.3389/fevo.2017.00070 DOI

Guignard M. S., Nichols R. A., Knell R. J., Macdonald A., Romila C. A., Trimmer M., et al. . (2016). Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation. New Phytol. 210, 1195–1206. 10.1111/nph.13881 PubMed DOI PMC

Guisan A., Petitpierre B., Broennimann O., Daehler C., Kueffer C. H. (2014). Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269. 10.1016/j.tree.2014.02.009 PubMed DOI

Guisan A., Thuiller W. (2005). Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009. 10.1111/j.1461-0248.2005.00792.x PubMed DOI

Gustafsson A. (1948). Polyploidy, life-form and vegetative reproduction. Hereditas 34, 1–22. 10.1111/j.1601-5223.1948.tb02824.x DOI

Hæggström C. A., Åström H. (2005). Allium oleraceum (Alliaceae) in Finland: distribution, habitats and accompanying vascular plant species. Mem. Soc. Fauna Flora Fenn. 81, 1–18.

Halverson K., Heard S. B., Nason J. D., Stireman J. O. (2008). Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae). Am. J. Bot. 95, 50–58. 10.3732/ajb.95.1.50 PubMed DOI

Han T. S., Zheng Q. J., Onstein R. E., Rojas-Andrés B. M., Hauenschild F., Muellner-Riehl A. N., et al. . (2020). Polyploidy promotes species diversification of Allium through ecological shifts. New Phytol. 225, 571–583. 10.1111/nph.16098 PubMed DOI

Hanelt P., Schultze-Motel J., Fritsch R., Kruse J., Maaß H. I., Ohle H., et al. (1992). “Infrageneric grouping of Allium – the gatersleben approach,” in The Genus Allium – Taxonomic Problems and Genetic Resources. eds Hanelt P., Hammer K., Knüpffer H. Proceedings of the International Symposium (Gatersleben: Institute of Plant Genetics and Crop Plant Research Gatersleben; ), 107–123.

Hanušová K., Čertner M., Urfus T., Koutecký P., Košnar J., Rothfels C. J., et al. . (2019). Widespread co-occurrence of multiple ploidy levels in fragile ferns (Cystopteris fragilis complex; Cystopteridaceae) probably stems from similar ecology of cytotypes, their efficient dispersal and inter-ploidy hybridization. Ann. Bot. 123, 845–855. 10.1093/aob/mcy219 PubMed DOI PMC

Hegarty M. J., Hiscock S. J. (2008). Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 18, 435–444. 10.1016/j.cub.2008.03.043 PubMed DOI

Hengl T., de Jesus J. M., Heuvelink G. B. M., Gonzalez M. R., Kilibarda M., Blagotić A., et al. . (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12:e0169748. 10.1371/journal.pone.0169748 PubMed DOI PMC

Hengl T., de Jesus J. M., MacMillan R. A., Batjes N. H., Heuvelink G. B. M., Ribeiro E., et al. . (2014). SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9:e105992. 10.1371/journal.pone.0105992 PubMed DOI PMC

Herben T., Suda J., Klimešová J. (2017). Polyploid species rely on vegetative reproduction more than diploids: a re-examination of the old hypothesis. Ann. Bot. 120, 341–349. 10.1093/aob/mcx009 PubMed DOI PMC

Hewitt G. M. (1999). Postglacial recolonization of European biota. Biol. J. Linn. Soc. 68, 87–112. 10.1111/j.1095-8312.1999.tb01160.x DOI

Hijmans R. J., van Etten J., Cheng J., Mattiuzzi M., Sumner M., Greenberg J. A., et al. (2017). Package ‘raster’. Available online at: https://cran.r-project.org/package=raster (accessed October 06, 2020).

Hintze J. (2013). NCSS 9. NCSS, LLC. Kaysville, UT. Available online at: www.ncss.com (accessed October 06, 2020).

Hojsgaard D., Hörandl E. (2019). The rise of apomixis in natural plant populations. Front. Plant Sci. 10, 358–358. 10.3389/fpls.2019.00358 PubMed DOI PMC

Hörandl E. (2006). The complex causality of geographical parthenogenesis. New Phytol. 171, 525–538. 10.1111/j.1469-8137.2006.01769.x PubMed DOI

Hörandl E. (2009). A combinational theory for maintenance of sex. Heredity 103, 445–457. 10.1038/hdy.2009.85 PubMed DOI PMC

Huntley B., Birks H. J. B. (1983). An atlas of Past and Present Pollen Maps for Europe. Cambridge: Cambridge University Press.

Husband B. C., Baldwin S. J., Suda J. (2013). “The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes,” in Flow Cytometry With Plant Cells: Analysis of Genes, Chromosomes and Genomes, eds Doležel J., Greilhuber J., Suda J. (Weinheim: Wiley-VCH; ), 255–276. 10.1007/978-3-7091-1160-4_16 DOI

Jauzein P., Tison J. M. (2001). Étude analytique du genre Allium L. sous-genre Codonoprasum (Reichenb) zahar section Codonoprasum Rechenb en France. J. Bot. Soc. Bot. France 15, 29–50.

Ježilová E., Nožková-Hlaváčková V., Duchoslav M. (2015), Photosynthetic characteristics of of three ploidy levels of Allium oleraceum L. (Amaryllidaceae) differing in ecological amplitude. Plant Spec. Biol. 30, 212–224. 10.1111/1442-1984.12053 DOI

Jiao Y., Wickett N. J., Ayyampalayam S., Chanderbali A. S., Landherr L., Ralph P. E., et al. . (2011). Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100. 10.1038/nature09916 PubMed DOI

Jírová A. (2007). Reproductive biology and phenology of allium oleraceum polyploid complex (MSc thesis). Palacký University Olomouc, Olomouc, Czech Republic.

Johnson A. L., Govindarajulu R., Ashman T.-L. (2014). Bioclimatic evaluation of geographical range in Fragaria (Rosaceae): consequences of variation in breeding system, ploidy and species age. Bot. J. Linn. Soc. 176, 99–114. 10.1111/boj.12190 DOI

Kao R. H. (2007). Asexuality and coexistence of cytotypes. New Phytol. 175, 764–772. 10.1111/j.1469-8137.2007.02145.x PubMed DOI

Kao R. H. (2008). Origins and widespread distribution of co-existing polyploids in Arnica cordifolia (Asteraceae). Ann. Bot. 101, 145–152. 10.1093/aob/mcm271 PubMed DOI PMC

Karpavičienė B. (2007). Chromosome numbers of Allium from Lithuania. Ann. Bot. Fenn. 44, 345–352.

Karpavičienė B. (2012). Morphological, reproductive and karyological variability in Allium oleraceum in Lithuania. Biologia 67, 278–283. 10.2478/s11756-012-0003-3 DOI

Karpavičienė B., Karanauskaitė D. (2010). Variation in reproductive modes of Allium oleraceum, A. scorodoprasum and A. vineale in field collection. Acta Biologica Universitatis Daugavpiliensis 10, 1–9.

Karunarathne P., Schedler M., Martínez E. J., Honfi A. I., Novichkova A., Hojsgaard D. (2018). Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids. Ann. Bot. 121, 1183–1196. 10.1093/aob/mcy004 PubMed DOI PMC

Kearney M. (2005). Hybridization, glaciation and geographical parthenogenesis. Trends Ecol. Evol. 20, 495–502. 10.1016/j.tree.2005.06.005 PubMed DOI

Kirchheimer B., Schinkel C. C. F., Dellinger A. S., Klatt S., Moser D., Winkler M., et al. . (2016). A matter of scale: apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. J. Biogeogr. 43, 716–726. 10.1111/jbi.12663 PubMed DOI PMC

Kliber A., Eckert C. G. (2005). Interaction between founder effect and selection during biological invasion in an aquatic plant. Evolution 59, 1900–1913. 10.1554/05-253.1 PubMed DOI

Kolář F., Čertner M., Suda J., Schönswetter P., Husband B. C. (2017). Mixed-ploidy species: progress and opportunities in polyploid research. Trends Plant Sci. 22, 1041–1055. 10.1016/j.tplants.2017.09.011 PubMed DOI

Kolář F., Lučanová M., Záveská E., Fuxová G., Mandáková T., Španiel S., et al. (2016). Ecological segregation does not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of the Arabidopsis arenosa group (Brassicaceae), Biol. J. Linn. Soc. 119, 673–688. 10.1111/bij.12479 DOI

Krahulcová A., Jarolímová V. (1993). Ecology of two cytotypes of Butomus umbellatus I. Karyology and breeding behaviour. Folia Geobot. Phytotax. 28, 385–411. 10.1007/BF02853305 DOI

Krejčíková J., Sudová R., Lučanová M., Trávníček P., Urfus T., Vít P., et al. . (2013). High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of Oxalis in the greater cape floristic region. Ann. Bot. 111, 641–649. 10.1093/aob/mct030 PubMed DOI PMC

Laport R. G., Hatem L., Minckley R. L., Ramsey J. (2013). Ecological niche modeling implicates climatic adaptation, competitive exclusion, and niche conservatism among Larrea tridentata cytotypes in North American deserts. J. Torrey Bot. Soc. 140, 349–364. 10.3159/TORREY-D-13-00009.1 DOI

Legendre P., Anderson M. J. (1999). Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24. 10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2 DOI

Legendre P., Legendre L. (1998). Numerical Ecology. 2nd Edn. Amsterdam: Elsevier.

Leitch A. R., Leitch I. J. (2008). Genomic plasticity and the diversity of polyploid plants. Science 320, 481–483. 10.1126/science.1153585 PubMed DOI

Leitch I. J., Chase M. W., Bennett M. D. (1998). Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann. Bot. 82, 85–94. 10.1006/anbo.1998.0783 DOI

Levan A. (1933). Cytological studies in Allium, III Allium carinatum and Allium oleraceum. Hereditas 18, 101–114. 10.1111/j.1601-5223.1933.tb02602.x DOI

Levan A. (1937). Cytological studies in Allium paniculatum group. Hereditas 23, 317–370. 10.1111/j.1601-5223.1937.tb02671.x DOI

Levin D. A. (1975). Minority cytotype exclusion in local plant populations. Taxon 24, 35–43. 10.2307/1218997 DOI

Levin D. A. (2002). The Role of Chromosomal Change in Plant Evolution. Oxford: Oxford University Press.

Levin D. A. (2020). Has the polyploid wave ebbed? Front. Plant Sci. 11:251. 10.3389/fpls.2020.00251 PubMed DOI PMC

Lewis W. H. (1967). Cytocatalytic evolution in plants. Bot. Rev. 33, 105–115. 10.1007/BF02858665 DOI

Lewis W. H. (1980). Polyploidy, Biological Relevance. New York, NY: Plenum Press; 10.1007/978-1-4613-3069-1 DOI

Lindgren A., Hugelius G., Kuhry P., Christensen T. R., Vandenberghe J. (2016). GIS-based maps and area estimates of northern hemisphere permafrost extent during the last glacial maximum. Permafrost Periglac. Process. 27, 6–16. 10.1002/ppp.1851 DOI

Lo E. Y. Y., Stefanović S., Dickinson T. A. (2013). Geographical parthenogenesis in Pacific Northwest hawthorns (Crataegus; Rosaceae). Botany 91, 107–116. 10.1139/cjb-2012-0073 DOI

López-Jurado J., Mateos-Naranjo E., Balao F. (2019). Niche divergence and limits to expansion in the high polyploid Dianthus broteri complex. New Phytol. 222, 1076–1087. 10.1111/nph.15663 PubMed DOI

Mandáková T., Münzbergová Z. (2006). Distribution and ecology of Aster amellus aggregates in the Czech republic. Ann. Bot. 98, 845–856. 10.1093/aob/mcl165 PubMed DOI PMC

Manzaneda A. J., Rey P. J., Bastida J. M., Weiss-Lehman C., Raskin E., Mitchell-Olds T. (2012). Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytol. 193, 797–805. 10.1111/j.1469-8137.2011.03988.x PubMed DOI PMC

Marchant D. B., Soltis D. E., Soltis P. S. (2016). Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytol. 212, 708–718. 10.1111/nph.14069 PubMed DOI

Marhold K., Kudoh H., Pak J.-H., Watanabe K., Španiel S., Lihová J. (2010). Cytotype diversity and genome size variation in eastern Asian polyploid Cardamine (Brassicaceae) species. Ann. Bot. 105, 249–264. 10.1093/aob/mcp282 PubMed DOI PMC

Martin S. L., Husband B. (2009). Influence of phylogeny and ploidy on species ranges of North American angiosperms. J. Ecol. 97, 913–922. 10.1111/j.1365-2745.2009.01543.x DOI

McAllister C., Blaine R., Kron P., Bennett B., Garrett H., Kidson J., et al. . (2015). Environmental correlates of cytotype distribution in Andropogon gerardii (Poaceae). Am. J. Bot. 102, 92–102. 10.3732/ajb.1400296 PubMed DOI

McCormack J. E., Zellmer A. J., Knowles L. L. (2010). Does niche divergence accompany allopatric divergence in Aphelocoma Jays as predicted under ecological speciation?: insights from tests with niche models. Evolution 64, 1231–1244. 10.1111/j.1558-5646.2009.00900.x PubMed DOI

McCune B., Keon D. (2002). Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603–606. 10.1111/j.1654-1103.2002.tb02087.x DOI

McIntyre P. J. (2012). Polyploidy associated with altered and broader ecological niches in the Claytonia perfoliata (Portulacaceae) species complex. Am. J. Bot. 99, 655–662. 10.3732/ajb.1100466 PubMed DOI

Médail F., Diadema K. (2009). Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36, 1333–1345. 10.1111/j.1365-2699.2008.02051.x DOI

Meusel H., Jäger E., Weinert E. (1965). Vergleichende Chorologie der zentraleuropäischen Flora. Jena: Gustav Fischer Verlag.

Mock K. E., Callahan C. M., Islam-Faridi M. N., Shaw J. D., Rai H. S., et al. . (2012). Widespread triploidy in western north american aspen (Populus tremuloides). PLoS ONE 7:e48406. 10.1371/journal.pone.0048406 PubMed DOI PMC

Mráz P., Ronikier M. (2016). Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559. 10.1111/bij.12918 DOI

Mucina L., Bültmann H., Dierßen K., Theurillat J.-P., Raus T., Carni A., et al. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl. Veg. Sci. 19, 3–264. 10.1111/avsc.12257 DOI

Muñoz-Pajares A. J., Perfectti F., Loureiro J., Abdelaziz M., Biella P., Castro M., et al. (2018). Niche differences may explain the geographic distribution of cytotypes in Erysimum mediohispanicum. Plant Biol. 20, 139–147. 10.1111/plb.12605 PubMed DOI

Němečková H., Krak K., Chrtek J. (2019). Complex pattern of ploidal and genetic variation in Seseli libanotis (Apiaceae). Ann. Bot. Fenn. 56, 57–77. 10.5735/085.056.0111 DOI

Otto S. P., Whitton J. (2000). Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437. 10.1146/annurev.genet.34.1.401 PubMed DOI

Pandit M. K., Pocock M. J. O., Kunin W. E. (2011). Ploidy influences rarity and invasiveness in plants. J. Ecol. 99, 1108–1115. 10.1111/j.1365-2745.2011.01838.x DOI

Pandit M. K., Tan H. T. W., Bisht M. S. (2006). Polyploidy in invasive plant species of Singapore. Bot. J. Linn. Soc. 151, 395–403. 10.1111/j.1095-8339.2006.00515.x DOI

Pandit M. K., White S. M., Pocock M. J. O. (2014). The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol. 203, 697–703. 10.1111/nph.12799 PubMed DOI

Parisod C., Holderegger R., Brochmann C. (2010). Evolutionary consequences of autopolyploidy. New Phytol. 186, 5–17. 10.1111/j.1469-8137.2009.03142.x PubMed DOI

Pastor J., Valdés B. (1983). Revisión del género Allium (Liliaceae) en peninsula Ibérica e Islas Baleares. Sevilla: Universidad de Sevilla Press.

Paule J., Sharbel T. F., Dobeš C. (2011). Apomictic and sexual lineages of the Potentilla argentea L. group (Rosaceae) – cytotype and molecular genetic differentiation. Taxon 60, 721–732. 10.1002/tax.603008 DOI

Peruzzi L., Carta A., Altinordu F. (2017). Chromosome diversity and evolution in Allium (Allioideae, Amaryllidaceae). Plant Biosyst. 151, 212–220. 10.1080/11263504.2016.1149123 DOI

Petit C., Bretagnolle F., Felber F. (1999). Evolutionary consequences of diploid-polyploid hybrid zones in wild species. Trends Ecol. Evol. 14, 306–311. 10.1016/S0169-5347(99)01608-0 PubMed DOI

Petitpierre B., Kueffer C., Broennimann O., Randin C., Daehler C., Guisan A. (2012). Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348. 10.1126/science.1215933 PubMed DOI

R Development Core Team (2014). A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Ramsey J. (2011). Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. U.S.A. 108, 7096–7101. 10.1073/pnas.1016631108 PubMed DOI PMC

Ramsey J., Ramsey T. S. (2014). Ecological studies of polyploidy in the 100 years following its discovery. Philos. Trans. R. Soc. B Biol. Sci. 369:20130352. 10.1098/rstb.2013.0352 PubMed DOI PMC

Ramsey J., Schemske D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29, 467–501. 10.1146/annurev.ecolsys.29.1.467 DOI

Ramsey J., Schemske D. W. (2002). Neopolyploidy in flowering plants. Annu. Rev. Ecol. Evol. Syst. 33, 589–639. 10.1146/annurev.ecolsys.33.010802.150437 DOI

Rausch J., Morgan M. T. (2005). The effects of self-fertilization, inbreeding depression, and population size on autopolyploid establishment. Evolution 59, 1867–1875. 10.1554/05-095.1 PubMed DOI

Rejlová L., Chrtek J., Trávníček P., Lučanová M., Vít P., Urfus T. (2019). Polyploid evolution: the ultimate way to grasp the nettle. PLoS ONE 14:e0218389. 10.1371/journal.pone.0218389 PubMed DOI PMC

Rice A., Glick L., Abadi S., Einhorn M., Kopelman N. M., Salman-Minkov A., et al. . (2015). The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytol. 206, 19–26. 10.1111/nph.13191 PubMed DOI

Rice A., Šmarda P., Novosolov M., Drori M., Glick L., Sabath N., et al. . (2019). The global biogeography of polyploid plants. Nat. Ecol. Evol. 3, 265–273. 10.1038/s41559-018-0787-9 PubMed DOI

Rieseberg L. H., Willis J. H. (2007). Plant speciation. Science 317, 910–914. 10.1126/science.1137729 PubMed DOI PMC

Rojas-Andrés B. M., Padilla-García N., de Pedro M., López-González N., Delgado L., Albach D. C., et al. . (2020). Environmental differences are correlated with the distribution pattern of cytotypes in Veronica subsection Pentasepalae at a broad scale. Ann. Bot. 125, 471–484. 10.1093/aob/mcz182 PubMed DOI PMC

Ronsheim M. L. (1994). Dispersal distances and predation rates of sexual and asexual propagules of Allium vineale. Am. Midl. Nat. 131, 55–64. 10.2307/2426608 DOI

Šafářová L., Duchoslav M., Jandová M., Krahulec F. (2011). Allium oleraceum in Slovakia: cytotype distribution and ecology. Preslia 83, 513–527.

Šafářová L., Duchoslav M. (2010). Cytotype distribution in mixed populations of polyploid Allium oleraceum measured at a microgeographic scale. Preslia 82, 107–126.

Salmeri C., Brullo C., Brullo S., Giusso del Galdo G., Moysiyenko I. I. (2016). What is Allium paniculatum? Establishing taxonomic and molecular phylogenetic relationships within A. sect. Codonoprasum. J. Syst. Evol. 5, 123–135. 10.1111/jse.12170 DOI

Schinkel C. C. F., Kirchheimer B., Dellinger A. S., Klatt S., Winkler M., Dullinger S., et al. . (2016). Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant. AoB Plants 8:plw064. 10.1093/aobpla/plw064 PubMed DOI PMC

Schoener T. W. (1968). The anolis lizards of bimini: resource partitioning in a complex fauna. Ecology 49:704–726. 10.2307/1935534 DOI

Segraves K. A., Anneberg T. J. (2016). Species interactions and plant polyploidy. Am. J. Bot. 103, 1326–1335. 10.3732/ajb.1500529 PubMed DOI

Sheth S. N., Morueta-Holme N., Angert A. L. (2020). Determinants of geographic range size in plants. New Phytol. 226, 650–665. 10.1111/nph.16406 PubMed DOI

Šingliarová B., Zozomová-Lihová J., Mráz P. (2019). Polytopic origin and scale-dependent spatial segregation of cytotypes in primary diploid–autopolyploid contact zones of Pilosella rhodopea (Asteraceae). Biol. J. Linn. Soc. 126, 360–379. 10.1093/biolinnean/bly199 DOI

Šmarda P., Hejcman M., Brezinová A., Horová L., Steigerová H., Zedek F., et al. . (2013). Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment. New Phytol. 200, 911–921. 10.1111/nph.12399 PubMed DOI

Solhaug E. M., Ihinger J., Jost M., Gamboa V., Marchant B., Bradford D., et al. . (2016). Environmental regulation of heterosis in the allopolyploid Arabidopsis suecica. Pl. Physiol. 170, 2251–2263. 10.1104/pp.16.00052 PubMed DOI PMC

Soltis D. E., Buggs R. J. A., Doyle J. J., Soltis P. S. (2010). What we still don't know about polyploidy. Taxon 59, 1387–1403. 10.1002/tax.595006 DOI

Soltis D. E., Soltis P. S. (1999). Polyploidy: recurrent formation and genome evolution. Trends Ecol. Evol. 14, 348–352. 10.1016/S0169-5347(99)01638-9 PubMed DOI

Soltis D. E., Soltis P. S., Tate J. A. (2004). Advances in the study of polyploidy since Plant speciation. New Phytol. 161, 173–191. 10.1046/j.1469-8137.2003.00948.x DOI

Soltis D. E., Visger C. J., Marchant D. B., Soltis P. S. (2016). Polyploidy: pitfalls and paths to a paradigm. Am. J. Bot. 103, 1146–1166. 10.3732/ajb.1500501 PubMed DOI

Soltis P. S., Soltis D. E. (1995). The dynamic nature of polyploid genomes. Proc. Natl. Acad. Sci. U.S.A. 92, 8089–8091. 10.1073/pnas.92.18.8089 PubMed DOI PMC

Soltis P. S., Soltis D. E. (2000). The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U.S.A. 97, 7051–7057. 10.1073/pnas.97.13.7051 PubMed DOI PMC

Soltis P. S., Soltis D. E. (eds.). (2012). Polyploidy and Genome Evolution. Berlin: Springer-Verlag; 10.1007/978-3-642-31442-1 DOI

Sonnleitner M., Flatscher R., García P. E., Rauchová J., Suda J., Schneeweiss G. M., et al. . (2010). Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Ann. Bot. 106, 967–977. 10.1093/aob/mcq192 PubMed DOI PMC

Stearn W. T. (1980). “Allium L.,” in Flora Europaea Vol. 5, eds Tutin T. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. M. (Cambridge: Cambridge University Press; ), 49–69.

Stebbins G. L. (1984). Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. Bot. Helv. 94, 1–13.

Stebbins G. L. (1985). Polyploidy, hybridization, and the invasion of new habitats. Ann. Missouri Bot. 72, 824–832. 10.2307/2399224 DOI

Stewart J. R., Lister A. M. (2001). Cryptic northern refugia and the origins of modern biota. Trends Ecol. Evol. 16, 608–613. 10.1016/S0169-5347(01)02338-2 DOI

Stewart J. R., Lister A. M., Barnes I., Dalén L. (2010). Refugia revisited: individualistic responses of species in space and time. Proc. Roy. Soc. B Biol. Sci. 277, 661–671. 10.1098/rspb.2009.1272 PubMed DOI PMC

Suda J., Krahulcová A., Trávníček P., Krahulec F. (2006). Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55, 447–450. 10.2307/25065591 DOI

Sutherland B. L., Galloway L. F. (2017). Postzygotic isolation varies by ploidy level within a polyploid complex. New Phytol. 213, 404–412. 10.1111/nph.14116 PubMed DOI

te Beest M., Le Roux J. J., Richardson D. M., Brysting A. K., Suda J., Kubešová M., et al. . (2012). The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 109, 19–45. 10.1093/aob/mcr277 PubMed DOI PMC

ter Braak C. J. F., Šmilauer P. (2012). CANOCO Reference Manual and User's Guide: Software for Ordination (Version 5.0). Wageningen: Biometris.

Theodoridis S., Randin C., Broennimann O., Patsiou T., Conti E. (2013). Divergent and narrower climatic niches characterize polyploid species of European primroses in Primula sect. Aleuritia. J. Biogeogr. 40, 1278–1289. 10.1111/jbi.12085 DOI

Thompson J., Lumaret R. (1992). The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol. Evol. 7, 302–307. 10.1016/0169-5347(92)90228-4 PubMed DOI

Tilquin A., Kokko H. (2016). What does the geography of parthenogenesis teach us about sex? Phil. Trans. R. Soc. B 371:20150538. 10.1098/rstb.2015.0538 PubMed DOI PMC

Tison J. M., de Foucault B. (2014). Flora Gallica. Flore de France. Mèze: Biotope.

Trabucco A., Zomer R. (2019). Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. 10.6084/m9.figshare.7504448.v3 PubMed DOI PMC

Trávníček P., Dočkalová Z., Rosenbaumová R., Kubátová B., Szelag Z., Chrtek J. (2011a). Bridging global and microregional scales: ploidy distribution in Pilosella echioides (Asteraceae) in central Europe. Ann. Bot. 107, 443–454. 10.1093/aob/mcq260 PubMed DOI PMC

Trávníček P., Kubátová B., Čurn V., Rauchová J., Krajníková E., Jersáková J., et al. . (2011b). Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Ann. Bot. 107, 77–87. 10.1093/aob/mcq217 PubMed DOI PMC

Trávníček P., Eliášová A., Suda J. (2010). The distribution of cytotypes of Vicia cracca in Central Europe: the changes that have occurred over the last four decades. Preslia 82, 149–163.

Treier U. A., Broennimann O., Normand S., Guisan A., Schaffner U., Steinger T., et al. . (2009). Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology 90:1366–1377. 10.1890/08-0420.1 PubMed DOI

Van de Peer Y., Mizrachi E., Marchal K. (2017). The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424. 10.1038/nrg.2017.26 PubMed DOI

van Dijk P., Hartog M., van Delden W. (1992). Single cytotype areas in autopolyploid Plantago media L. Biol. J. Linn. Soc. 46, 315–331. 10.1111/j.1095-8312.1992.tb00867.x DOI

Vandenberghe J., French H. M., Gorbunov A., Marchenko S., Velichko A. A., Jin H., et al. (2014). The last permafrost maximum (LPM) map of the Northern hemisphere: permafrost extent and mean annual air temperatures, 25-17 ka BP. Boreas 43, 652–666. 10.1111/bor.12070 DOI

Veselý P., Bureš P., Šmarda P., Pavlíček T. (2012). Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Ann. Bot. 109, 65–75. 10.1093/aob/mcr267 PubMed DOI PMC

Visger C. J., Germain-Aubrey C. C., Patel M., Sessa E. B., Soltis P. S., Soltis D. E. (2016). Niche divergence between diploid and autotetraploid Tolmiea. Am. J. Bot. 103, 1–11. 10.3732/ajb.1600130 PubMed DOI

Visser V., Molofsky J. (2015). Ecological niche differentiation of polyploidization is not supported by environmental differences among species in a cosmopolitan grass genus. Am. J. Bot. 102, 36–49. 10.3732/ajb.1400432 PubMed DOI

Vosa C. G. (1976). Heterochromatic banding patterns in Allium. II. Heterochromatin variation in species of the paniculatum group. Chromosoma 57, 119–133. 10.1007/BF00292911 DOI

Vrijenhoek R. C. (1994). Unisexual fish: model systems for studying ecology and evolution. Annu. Rev. Ecol. Syst. 25, 71–96. 10.1146/annurev.es.25.110194.000443 DOI

Vvedenskii A. (1935). “Genus Allium L.,” in Flora U.S.S.R., Vol.4, Liliiflorae and Microspermae, ed V. Komarov (Leningrad: Izdatelstvo Akademii Nauk SSSR; ), 112–280.

Warren D. L., Glor R. E., Turelli M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883. 10.1111/j.1558-5646.2008.00482.x PubMed DOI

Warren D. L., Glor R. E., Turelli M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. 10.1111/j.1600-0587.2009.06142.x DOI

Weiss-Schneeweiss H., Emadzade K., Jang T. S., Schneeweiss G. M. (2013). Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet. Genome Res. 140, 137–150. 10.1159/000351727 PubMed DOI PMC

Wendel J. (2000). Genome evolution in polyploids. Pl. Molec. Biol. 42, 225–249. 10.1023/A:1006392424384 PubMed DOI

Wiens J. J., Ackerly D. D., Allen A. P., Anacker B. L., Buckley L. B., Cornell H. V., et al. . (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324. 10.1111/j.1461-0248.2010.01515.x PubMed DOI

Wood T. E., Takebayashi N., Barker M. S., Mayrose I., Greenspoon P. B., Rieseberg L. H. (2009). The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. U.S.A. 106, 13875–13879. 10.1073/pnas.0811575106 PubMed DOI PMC

Wos G., Morkovská J., Bohutínská M., Šrámková G., Knotek A., Lučanová M., et al. . (2019). Role of ploidy in colonization of alpine habitats in natural populations of Arabidopsis arenosa. Ann. Bot. 124, 255–268. 10.1093/aob/mcz070 PubMed DOI PMC

Wu L.-L., Cui X.-K., Milne R. I., Sun Y.-S., Liu J.-Q. (2010). Multiple autopolyploidizations and range expansion of Allium przewalskianum Regel. (Alliaceae) in the Qinghai-Tibetan plateau. Molec. Ecol. 19, 1691–1704. 10.1111/j.1365-294X.2010.04613.x PubMed DOI

Yamauchi A., Hosokawa A., Nagata H., Shimoda M. (2004). Triploid bridge and role of parthenogenesis in the evolution of autopolyploidy. Am. Nat. 164, 101–112. 10.1086/421356 PubMed DOI

Yoo M.-J., Liu X., Pires J. C., Soltis P. S., Soltis D. E. (2014). Nonadditive gene expression in polyploids. Annu. Rev. Genet. 48, 485–517. 10.1146/annurev-genet-120213-092159 PubMed DOI

Zar J. H. (1996). Biostatistical Analysis. 4th Edn. New Jersey, NJ: Prentice Hall.

Zólyomi B., Fekete G. (1994). The pannonian loess steppe: differentiation in space and time. Abstr. Bot., 18, 29–41.

Zozomová-Lihová J., Krak K., Mandáková T., Shimizu K. K., Španiel S., Vít P., et al. . (2014). Multiple hybridization events in Cardamine (Brassicaceae) during the last 150 years: Revisiting a textbook example of neoallopolyploidy. Ann. Bot. 113, 817–830. 10.1093/aob/mcu012 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace