Polyploid species rely on vegetative reproduction more than diploids: a re-examination of the old hypothesis
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
28334206
PubMed Central
PMC5737615
DOI
10.1093/aob/mcx009
PII: 3056738
Knihovny.cz E-zdroje
- Klíčová slova
- clonal traits, correlated evolution, phylogenetic analysis, polyploidy, vegetative reproduction,
- MeSH
- diploidie MeSH
- fylogeneze * MeSH
- Magnoliopsida klasifikace fyziologie MeSH
- polyploidie * MeSH
- vznik druhů (genetika) * MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Polyploidy is arguably the single most important genetic mechanism in plant speciation and diversification. It has been repeatedly suggested that polyploids show higher vegetative reproduction than diploids (to by-pass low fertility after the polyploidization), but there are no rigorous tests of it. METHODS: Data were analysed by phylogenetic regressions of clonal growth parameters, and vegetative reproduction in culture on the ploidy status of a large set of species (approx. 900) from the Central European Angiosperm flora. Further, correlated evolution of ploidy and clonal traits was examined to determine whether or not polyploidy precedes vegetative reproduction. KEY RESULTS: The analyses showed that polyploidy is strongly associated with vegetative reproduction, whereas diploids rely more on seed reproduction. The rate of polyploid speciation is strongly enhanced by the existence of vegetative reproduction (namely extensive lateral spread), whereas the converse is not true. CONCLUSIONS: These findings confirm the old hypothesis that polyploids can rely on vegetative reproduction which thus may save many incipient polyploids from extinction. A closer analysis also shows that the sequence of events begins with development of vegetative reproduction, which is then followed by polyploidy. Vegetative reproduction is thus likely to play an important role in polyploid speciation.
Institute of Botany Academy of Science of the Czech Republic CZ 379 82 Trebon Czech Republic
Institute of Botany Academy of Sciences of the Czech Republic CZ 252 43 Průhonice Czech Republic
Zobrazit více v PubMed
Asker SE, Jerling L.. 1992. Apomixis in plants. Boca Raton, FL: CRC Press.
Baldwin SJ, Husband BC.. 2013. The association between polyploidy and clonal reproduction in diploid and tetraploid Chamerion angustifolium. Molecular Ecology 22: 1806–1819. PubMed
Bennett MD, Leitch IJ.. 2012. Pteridophyte DNA C-values database (Release 5.0, December 2012). http://data.kew.org/cvalues.
Beaulieu JM, O’Meara B.. 2016. OUwie: analysis of evolutionary rates in an OU framework. R package version 1·50. https://CRAN.R-project.org/package=OUwie.
Beaulieu JM, Jhwueng DC, Boettiger C, O’Meara BC.. 2012. Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 66: 2369–2383. PubMed
Boedeltje G, Ozinga WA, Prinzing A.. 2008. The trade-off between vegetative and generative reproduction among angiosperms influences regional hydrochorous propagule pressure. Global Ecology and Biogeography 17: 50–58.
Choleva L, Janko K, De Gelas K, et al.2012. Synthesis of clonality and polyploidy in vertebrate animals by hybridization between two sexual species. Evolution 66: 2191–2203. PubMed
Christensen RHB. 2011. Ordinal regression models for ordinal data. R package version 2010.10-22 http://www.cran.r-project.org/package=ordinal/.
Comai L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6: 836–846. PubMed
Dobeš C, Vitek E.. 2000. Documented chromosome number checklist of Austrian vascular plants. Wien, Österreich: Verlag des Naturhistorischen Museums Wien.
Doležel J, Greilhuber J, Suda J.. 2007. Flow cytometry with plants: an overview In: Doležel JJ, Greilhuber J, Suda J, eds. Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Weinheim, Germany: Wiley-VCH, 41–65.
Duchoslav M., Staňková H.. 2015. The population genetic structure and clonal diversity of Allium oleraceum (Amaryllidaceae), a polyploid geophyte with common asexual but variable sexual reproduction. Folia Geobotanica 50: 123–136.
Durka W, Michalski SG.. 2012. Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology 93: 2297–2297.
Eckert CG, Lui K, Bronson K, Corradini P, Bruneau A.. 2003. Population genetic consequences of extreme variation in sexual and clonal reproduction in an aquatic plant. Molecular Ecology 12: 331–344. PubMed
Felber F. 1991. Establishment of a tetraploid cytotype in a diploid population: effect of relative fitness of the cytotypes. Journal of Evolutionary Biology 4: 195–207.
Fowler NL, Levin DA.. 1984. Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. American Naturalist 124: 701–711.
Freckleton RP, Harvey PH, Pagel M.. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist 160: 712–26. PubMed
Fritz SA, Purvis A.. 2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology 24: 1042–1051. PubMed
Glick L, Mayrose I.. 2014. ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Molecular Biology and Evolution 31: 1914–1922. PubMed
Goldblatt P. 1980. Polyploidy in angiosperms: monocotyledons In: Lewis WH, ed. Polyploidy: biological relevance. New York: Plenum Press, 219–239.
Goldblatt P, Johnson DE.. 1979. Index to plant chromosome numbers. St Louis, MO: Missouri Botanical Garden.
Góralski G, Lubczyńska P, Joachimiak AJ.. 2009. onwards. Chromosome number database http://www.chromosomes.binoz.uj.edu.pl/chromosomes/.
Grant V. 1981. Plant speciation, 2nd edn New York: Columbia University Press.
Gustafsson A. 1948. Polyploidy, life-form and vegetative reproduction. Hereditas 34: 1–22.
Harmon L, Weir J, Brock C, et al., 2014. Package ‘geiger’ https://cran.r-project.org/web/packages/geiger.
Herben T, Nováková Z, Klimešová J, Hrouda L.. 2012. Species traits and plant performance: functional trade-offs in a large set of species in a botanical garden. Journal of Ecology 100: 1522–1533.
Herben T, Nováková Z, Klimešová J.. 2014. Clonal growth and plant species abundance. Annals of Botany 114: 377–388. PubMed PMC
Holden C, Mace R.. 1997. Phylogenetic analysis of the evolution of lactose digestion in adults. Human Biology 69: 605–628. PubMed
Husband BC. 2004. The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biological Journal of the Linnean Society 82: 537–546.
Husband BC, Baldwin SJ, Suda J.. 2013. The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF, eds. Plant genome diversity Volume 2. Physical structure, behaviour and evolution of plant genomes. Wien, Austria: Springer Verlag, 255–276.
Jiao Y, Wickett NJ, Ayyampalayam S, et al.2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97–100. PubMed
Keeler KH. 2004. Impact of intraspecific polyploidy in Andropogon gerardii (Poaceae) populations. American Midland Naturalist 152: 63–74.
Klimeš L, Klimešová J, Hendriks R, van Groenendael J.. 1997. Clonal plant architecture: a comparative analysis of form and function In: de Kroon H, van Groenendael J, eds. The ecology and evolution of clonal plants. Leiden, The Netherlands: Backhuys Publishers, 1–29.
Klimešová J, de Bello F.. 2009. CLO-PLA: the database of clonal and bud bank traits of Central European flora. Journal of Vegetation Science 20: 511–516.
Klimešová J, Tackenberg O, Herben T.. 2016. Herbs are different: clonal and bud bank traits can matter more than leaf–height–seed traits. New Phytologist 210: 13–17. PubMed
Levin D. 1975. Minority cytotype exclusion in local plant populations. Taxon 24: 35–43.
Lososová Z, Šmarda P, Chytrý M, et al.2015. Phylogenetic structure of plant species pools reflects habitat age on the geological time scale. Journal of Vegetation Science 26: 1080–1089.
Maddison WP, FitzJohn RG.. 2015. The unsolved challenge to phylogenetic correlation tests for categorical characters. Systematic Biology 64: 127–136. PubMed
Marhold P, Mártonfi P, Mereďa P, et al.2012. Karyological database of the ferns and flowering plants of Slovakia.http://www.chromosomes.sav.sk.
Meyers LA, Levin DA.. 2006. On the abundance of polyploids in flowering plants. Evolution 60: 1198–1206. PubMed
Obeso JR. 2002. The costs of reproduction in plants. New Phytologist 155: 321–348. PubMed
Orme D. 2012. The Caper package: comparative analysis of phylogenetics and evolution in R http://cran.r-project.org/web/packages/caper/.
Otto SP, Whitton J.. 2000. Polyploid incidence and evolution. Annual Review of Genetics 34: 401–437. PubMed
Pagel M. 1994. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society B: Biological Sciences 255: 37–45.
R Core Team. 2015. R: a language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Ramsey J, Schemske DW.. 1998. Pathways, mechanisms and rates of polyploidy formation in flowering plants. Annual Review of Ecology and Systematics 29: 467–501.
Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217–223.
Revell LJ. 2014. Package ‘phytools’.https://cran.r-project.org/web/packages/phytools.
Reznick D, Nunney L, Tessier A.. 2000. Big houses, big cars, superfleas and the costs of reproduction. Trends in Ecology and Evolution 15: 421–425. PubMed
Rice A, Glick L, Abadi S, et al.2015. The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytologist 206: 19–26. PubMed
Robertson K, Goldberg EE, Igic B.. 2011. Comparative evidence for the correlated evolution of polyploidy and self-compatibility in Solanaceae. Evolution 65: 139–155. PubMed
Schmid B, Harper JL.. 1985. Clonal growth in grassland perennials I. Density and pattern dependent competition between plants with different growth forms. Journal of Ecology 73: 793–808.
Soltis DE, Buggs RJA, Doyle JJ, Soltis PS.. 2010. What we still don’t know about polyploidy. Taxon 59: 1387–1403.
Soltis DE, Segovia-Salcedo MC, Jordon-Thaden I, et al.2014. Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytologist 202: 1105–1117. PubMed
Stebbins GL. 1957. Self fertilization and population variability in the higher plants. American Naturalist 91: 337–354.
Weiss-Schneeweiss H, Emadzade K, Jang T-S, Schneeweiss GM.. 2013. Evolutionary consequences, constraints, and potential of polyploidy in plants. Cytogenetic and Genome Research 140: 137–150. PubMed PMC
von Wettstein F. 1927. Die Erscheinung der Heteroploidie, besonders im Pflanzenreich. Ergebnise der Biologie, Bd. 11. Berlin: Springer Verlag.
Whitton J, Sears CJ, Baack EJ, Otto SP.. 2008. The dynamic nature of apomixis in the angiosperms. International Journal of Plant Sciences 169: 169–182.
Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH.. 2009. The frequency of polyploidy speciation in plants. Proceedings of the National Academy of Sciences, USA 106: 13875–13879. PubMed PMC
Novelty and Convergence in Adaptation to Whole Genome Duplication