Cytotype coexistence in the field cannot be explained by inter-cytotype hybridization alone: linking experiments and computer simulations in the sexual species Pilosella echioides (Asteraceae)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
28335715
PubMed Central
PMC5364689
DOI
10.1186/s12862-017-0934-y
PII: 10.1186/s12862-017-0934-y
Knihovny.cz E-zdroje
- Klíčová slova
- Cytotype diversity, Mating interactions, Minority cytotype exclusion, Pilosella echioides, Polyploidy, Triploid bridge,
- MeSH
- Asteraceae genetika MeSH
- diploidie MeSH
- fertilita MeSH
- hybridizace genetická MeSH
- křížení genetické MeSH
- počítačová simulace MeSH
- polyploidie * MeSH
- rozmnožování MeSH
- semena rostlinná genetika MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Processes driving ploidal diversity at the population level are virtually unknown. Their identification should use a combination of large-scale screening of ploidy levels in the field, pairwise crossing experiments and mathematical modelling linking these two types of data. We applied this approach to determine the drivers of frequencies of coexisting cytotypes in mixed-ploidy field populations of the fully sexual plant species Pilosella echioides. We examined fecundity and ploidal diversity in seeds from all possible pairwise crosses among 2x, 3x and 4x plants. Using these data, we simulated the dynamics of theoretical panmictic populations of individuals whose progeny structure is identical to that determined by the hybridization experiment. RESULTS: The seed set differed significantly between the crossing treatments, being highest in crosses between diploids and tetraploids and lowest in triploid-triploid crosses. The number of progeny classes (with respect to embryo and endosperm ploidy) ranged from three in the 2x-2x cross to eleven in the 3x-3x cross. Our simulations demonstrate that, provided there is no difference in clonal growth and/or survival between cytotypes, it is a clear case of minority cytotype exclusion depending on the initial conditions with two stable states, neither of which corresponds to the ploidal structure in the field: (i) with prevalent diploids and lower proportions of other ploidies, and (ii) with prevalent tetraploids and 9% of hexaploids. By contrast, if clonal growth differs between cytotypes, minority cytotype exclusion occurs only if the role of sexual reproduction is high; otherwise differences in clonal growth are sufficient to maintain triploid prevalence (as observed in the field) independently of initial conditions. CONCLUSIONS: The projections of our model suggest that the ploidal structure observed in the field can only be reached via a relatively high capacity for clonal growth (and proportionally lower sexual reproduction) in all cytotypes combined with higher clonal growth in the prevailing cytotype (3x).
Department of Botany Faculty of Science Charles University Prague CZ 128 01 Prague Czech Republic
Faculty of Agriculture University of South Bohemia CZ 370 05 České Budějovice Czech Republic
Institute of Botany The Czech Academy of Sciences CZ 252 43 Průhonice Czech Republic
Zobrazit více v PubMed
Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst. 1998;29:467–501. doi: 10.1146/annurev.ecolsys.29.1.467. DOI
Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34:401–437. doi: 10.1146/annurev.genet.34.1.401. PubMed DOI
Soltis PS. Ancient and recent polyploidy in angiosperms. New Phytol. 2005;166:5–8. doi: 10.1111/j.1469-8137.2005.01379.x. PubMed DOI
Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng CF, et al. Polyploidy and angiosperm diversification. Am J Bot. 2009;96:336–348. doi: 10.3732/ajb.0800079. PubMed DOI
Jiao YN, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PH, et al. Ancestral polyploidy in seed plants and angiosperms. Nature. 2011;473:97–100. doi: 10.1038/nature09916. PubMed DOI
Adams KL, Wendel JF. Polyploidy and genome evolution in plants. Curr Opin Plant Biol. 2005;8:135–141. doi: 10.1016/j.pbi.2005.01.001. PubMed DOI
Parisod C, Holderegger R, Brochmann C. Evolutionary consequences of autopolyploidy. New Phytol. 2010;186:5–17. doi: 10.1111/j.1469-8137.2009.03142.x. PubMed DOI
Burton TL, Husband BC. Cytotype distribution in the autopolyploid Galax urceolata Diapensiaceae) Heredity. 1999;82:381–390. doi: 10.1038/sj.hdy.6884910. PubMed DOI
Weiss H, Dobeš C, Schneeweiss GM, Greimler J. Occurrence of tetraploid and hexaploid cytotypes between and within populations in Dianthus sect. Plumaria (Caryophyllaceae) New Phytol. 2002;156:85–94. doi: 10.1046/j.1469-8137.2002.00500.x. DOI
Balao F, Casimiro-Soriguer R, Talavera M, Herrera J, Talavera S. Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations. Ann Bot. 2009;104:965–973. doi: 10.1093/aob/mcp182. PubMed DOI PMC
Kolář F, Štech M, Trávníček P, Rauchová J, Urfus T, et al. Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Ann Bot. 2009;103:963–974. doi: 10.1093/aob/mcp016. PubMed DOI PMC
Trávníček P, Kubátová B, Čurn V, Rauchová J, Krajníková E, et al. Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Ann Bot. 2011;107:77–87. doi: 10.1093/aob/mcq217. PubMed DOI PMC
Baack EJ. Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae) Am J Bot. 2004;91:1783–1788. doi: 10.3732/ajb.91.11.1783. PubMed DOI
Stuessy TF, Weiss-Schneeweiss H, Keil DJ. Diploid and polyploid cytotype distribution in Melampodium cinereum and M. leucanthum (Asteraceae, Heliantheae) Am J Bot. 2004;91:889–898. doi: 10.3732/ajb.91.6.889. PubMed DOI
Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss GM, Trávníček P, Schönswetter P. Complex distribution patterns of di-, tetra-, and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae) Am J Bot. 2007;94:1391–1401. doi: 10.3732/ajb.94.8.1391. PubMed DOI
Halverson K, Heard SB, Nason JD, Stireman JO. Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae) Am J Bot. 2008;95:50–58. doi: 10.3732/ajb.95.1.50. PubMed DOI
Hülber K, Sonnleitner M, Flatscher R, Berger A, Dobrovsky R, et al. Ecological segregation drives fine-scale cytotype distribution of Senecio carniolicus in the Eastern Alps. Preslia. 2009;81:309–319. PubMed PMC
Šingliarová B, Chrtek J, Plačková I, Mráz P. Allozyme variation in diploid, polyploid and ploidy-mixed populations of the Pilosella alpicola group (Asteraceae): relation to morphology, origin of polyploids and breeding system. Folia Geobot. 2011;46:387–410. doi: 10.1007/s12224-011-9102-0. DOI
Bretagnolle F, Thompson JD. Gametes with the somatic chromosome number: mechanism of their formation and role in the evolution of autopolyploid plants. New Phytol. 1995;129:1–22. doi: 10.1111/j.1469-8137.1995.tb03005.x. PubMed DOI
Felber F, Bever JD. Effect of triploid fitness on the coexistence of diploids and tetraploids. Biol J Linn Soc Lond. 1997;60:95–106. doi: 10.1111/j.1095-8312.1997.tb01485.x. DOI
Köhler C, Mittelsten Scheid O, Erilova A. The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet. 2010;26:142–148. doi: 10.1016/j.tig.2009.12.006. PubMed DOI
Petit C, Lesbros P, Ge X, Thompson JD. Variation in flowering phenology and selfing rate across a contact zone between diploid and tetraploid Arrhenatherum elatius (Poaceae) Heredity. 1997;79:31–40. doi: 10.1038/hdy.1997.120. DOI
Orr HA, Presgraves DC. Speciation by postzygotic isolation: forces, genes and molecules. Bioessays. 2000;22:1085–1094. doi: 10.1002/1521-1878(200012)22:12<1085::AID-BIES6>3.0.CO;2-G. PubMed DOI
Husband BC, Sabara HA. Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae) New Phytol. 2004;161:703–713. doi: 10.1046/j.1469-8137.2004.00998.x. PubMed DOI
Rieseberg LH, Willis JH. Plant speciation. Science. 2007;317:910–914. doi: 10.1126/science.1137729. PubMed DOI PMC
Jersáková J, Castro S, Sonk N, Milchreit K, Schödelbauerová I, Tolasch T, et al. Absence of pollinator-mediated premating barriers in mixed-ploidy populations of Gymnadenia conopsea s.l. (Orchidaceae) Evol Ecol. 2010;24:1199–1218. doi: 10.1007/s10682-010-9356-7. DOI
Husband BC. The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biol J Linn Soc Lond. 2004;82:537–546. doi: 10.1111/j.1095-8312.2004.00339.x. DOI
Trávníček P, Dočkalová Z, Rosenbaumová R, Kubátová B, Szeląg Z, Chrtek J. Bridging global and microregional scales: ploidy distribution in Pilosella echioides (Asteraceae) in Central Europe. Ann Bot. 2011;107:443–454. doi: 10.1093/aob/mcq260. PubMed DOI PMC
Gustafsson A. Polyploidy, life-form and vegetative reproduction. Hereditas. 1948;34:1–22. doi: 10.1111/j.1601-5223.1948.tb02824.x. DOI
Stebbins GL. Variation and evolution in plants. New York: Columbia University Press; 1950.
Herben T, Suda J, Klimešová, J. Polyploid species rely on vegetative reproduction more than diploids: re-examination of the old hypothesis. Ann Bot. doi: 10.1093/aob/mcx009. PubMed PMC
Eckert CG, Lui K, Bronson K, Corradini P, Bruneau A. Population genetic consequences of extreme variation in sexual and clonal reproduction in an aquatic plant. Mol Ecol. 2003;12:331–344. doi: 10.1046/j.1365-294X.2003.01737.x. PubMed DOI
Keeler KH. Impact of intraspecific polyploidy in Andropogon gerardii (Poaceae) populations. Am Midl Natur. 2004;152:63–74. doi: 10.1674/0003-0031(2004)152[0063:IOIPIA]2.0.CO;2. DOI
Baldwin SJ, Husband BC. The association between polyploidy and clonal reproduction in diploid and tetraploid Chamerion angustifolium. Mol Ecol. 2013;22:1806–1819. doi: 10.1111/mec.12217. PubMed DOI
Futuyma DJ. Evolutionary biology. 3. Sunderland: Sinauer Assoc Inc; 1998.
Schluter D. Ecology and the origin of species. Trends Ecol Evol. 2001;16:372–380. doi: 10.1016/S0169-5347(01)02198-X. PubMed DOI
Burton TL, Husband BC. Fitness differences among diploids, tetraploids and their triploid progeny in Chamerion angustifolium: Mechanisms of inviability and implications for polyploidy evolution. Evolution. 2000;54:1182–1191. doi: 10.1111/j.0014-3820.2000.tb00553.x. PubMed DOI
Burton TL, Husband BC. Fecundity and offspring ploidy in matings among diploid, triploid and tetraploid Chamerion angustifolium (Onagraceae): consequences for tetraploid establishment. Heredity. 2001;87:573–582. doi: 10.1046/j.1365-2540.2001.00955.x. PubMed DOI
Šingliarová B, Hodálová I, Mráz P. Biosystematic study of the diploid-polyploid Pilosella alpicola group with variation in breeding system: patterns and processes. Taxon. 2011;60:450–470.
Husband BC, Schemske DW. Cytotype distribution at a diploid-tetraploid hybrid zone in Chamerion (Epilobium) angustifolium (Onagraceae) Am J Bot. 1998;85:1688–1694. doi: 10.2307/2446502. PubMed DOI
Bräutigam S. Hieracium L. In: Meusel H, Jäger EJ, editors. Vergleichende Chorologie der zentraleuropäischen Flora 3. Jena: Gustav Fischer; 1992. pp. 325–333.
Peckert T, Chrtek J. Mating interactions between coexisting diploid, triploid and tetraploid cytotypes of Hieracium echioides (Asteraceae) Folia Geobot. 2006;41:323–334. doi: 10.1007/BF02904945. DOI
Matzk F, Meister A, Schubert I. An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J. 2000;21:97–108. doi: 10.1046/j.1365-313x.2000.00647.x. PubMed DOI
Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z, editors. Methods in cell biology: flow cytometry. San Diego: Academic; 1990. pp. 105–110. PubMed
Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2:2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI
Leong-Škorničková J, Šída O, Jarolímová V, Sabu M, Fér T, et al. Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae) Ann Bot. 2007;100:505–526. doi: 10.1093/aob/mcm144. PubMed DOI PMC
Herben T, Trávníček P, Chrtek J. Reduced and unreduced gametes combine almost freely in a multiploidy system. Persp Pl Ecol Evol Syst. 2016;18:15–22. doi: 10.1016/j.ppees.2015.12.001. DOI
Husband BC, Schemske DW. The effect of inbreeding in diploid and tetraploid populations of Epilobium angustifolium (Onagraceae): implications of for the genetic basis of inbreeding depression. Evolution. 1997;51:737–746. doi: 10.2307/2411150. PubMed DOI
Husband BC, Ozimec B, Martin SL, Pollock L. Mating consequences of polyploid evolution in flowering plants: current trends and insights from synthetic polyploids. Int J Plant Sci. 2008;169:195–206. doi: 10.1086/523367. DOI
Baldwin SJ, Husband BC. Genome duplication and the evolution of conspecific pollen precedence. Proc R Soc Lond B Biol Sci. 2011;278:2011–2017. doi: 10.1098/rspb.2010.2208. PubMed DOI PMC
Temporal stability of spatial cytotype structure in mixed-ploidy populations of Centaurea stoebe