Cytotype coexistence in the field cannot be explained by inter-cytotype hybridization alone: linking experiments and computer simulations in the sexual species Pilosella echioides (Asteraceae)

. 2017 Mar 23 ; 17 (1) : 87. [epub] 20170323

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28335715
Odkazy

PubMed 28335715
PubMed Central PMC5364689
DOI 10.1186/s12862-017-0934-y
PII: 10.1186/s12862-017-0934-y
Knihovny.cz E-zdroje

BACKGROUND: Processes driving ploidal diversity at the population level are virtually unknown. Their identification should use a combination of large-scale screening of ploidy levels in the field, pairwise crossing experiments and mathematical modelling linking these two types of data. We applied this approach to determine the drivers of frequencies of coexisting cytotypes in mixed-ploidy field populations of the fully sexual plant species Pilosella echioides. We examined fecundity and ploidal diversity in seeds from all possible pairwise crosses among 2x, 3x and 4x plants. Using these data, we simulated the dynamics of theoretical panmictic populations of individuals whose progeny structure is identical to that determined by the hybridization experiment. RESULTS: The seed set differed significantly between the crossing treatments, being highest in crosses between diploids and tetraploids and lowest in triploid-triploid crosses. The number of progeny classes (with respect to embryo and endosperm ploidy) ranged from three in the 2x-2x cross to eleven in the 3x-3x cross. Our simulations demonstrate that, provided there is no difference in clonal growth and/or survival between cytotypes, it is a clear case of minority cytotype exclusion depending on the initial conditions with two stable states, neither of which corresponds to the ploidal structure in the field: (i) with prevalent diploids and lower proportions of other ploidies, and (ii) with prevalent tetraploids and 9% of hexaploids. By contrast, if clonal growth differs between cytotypes, minority cytotype exclusion occurs only if the role of sexual reproduction is high; otherwise differences in clonal growth are sufficient to maintain triploid prevalence (as observed in the field) independently of initial conditions. CONCLUSIONS: The projections of our model suggest that the ploidal structure observed in the field can only be reached via a relatively high capacity for clonal growth (and proportionally lower sexual reproduction) in all cytotypes combined with higher clonal growth in the prevailing cytotype (3x).

Zobrazit více v PubMed

Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst. 1998;29:467–501. doi: 10.1146/annurev.ecolsys.29.1.467. DOI

Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34:401–437. doi: 10.1146/annurev.genet.34.1.401. PubMed DOI

Soltis PS. Ancient and recent polyploidy in angiosperms. New Phytol. 2005;166:5–8. doi: 10.1111/j.1469-8137.2005.01379.x. PubMed DOI

Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng CF, et al. Polyploidy and angiosperm diversification. Am J Bot. 2009;96:336–348. doi: 10.3732/ajb.0800079. PubMed DOI

Jiao YN, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PH, et al. Ancestral polyploidy in seed plants and angiosperms. Nature. 2011;473:97–100. doi: 10.1038/nature09916. PubMed DOI

Adams KL, Wendel JF. Polyploidy and genome evolution in plants. Curr Opin Plant Biol. 2005;8:135–141. doi: 10.1016/j.pbi.2005.01.001. PubMed DOI

Parisod C, Holderegger R, Brochmann C. Evolutionary consequences of autopolyploidy. New Phytol. 2010;186:5–17. doi: 10.1111/j.1469-8137.2009.03142.x. PubMed DOI

Burton TL, Husband BC. Cytotype distribution in the autopolyploid Galax urceolata Diapensiaceae) Heredity. 1999;82:381–390. doi: 10.1038/sj.hdy.6884910. PubMed DOI

Weiss H, Dobeš C, Schneeweiss GM, Greimler J. Occurrence of tetraploid and hexaploid cytotypes between and within populations in Dianthus sect. Plumaria (Caryophyllaceae) New Phytol. 2002;156:85–94. doi: 10.1046/j.1469-8137.2002.00500.x. DOI

Balao F, Casimiro-Soriguer R, Talavera M, Herrera J, Talavera S. Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations. Ann Bot. 2009;104:965–973. doi: 10.1093/aob/mcp182. PubMed DOI PMC

Kolář F, Štech M, Trávníček P, Rauchová J, Urfus T, et al. Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Ann Bot. 2009;103:963–974. doi: 10.1093/aob/mcp016. PubMed DOI PMC

Trávníček P, Kubátová B, Čurn V, Rauchová J, Krajníková E, et al. Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Ann Bot. 2011;107:77–87. doi: 10.1093/aob/mcq217. PubMed DOI PMC

Baack EJ. Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae) Am J Bot. 2004;91:1783–1788. doi: 10.3732/ajb.91.11.1783. PubMed DOI

Stuessy TF, Weiss-Schneeweiss H, Keil DJ. Diploid and polyploid cytotype distribution in Melampodium cinereum and M. leucanthum (Asteraceae, Heliantheae) Am J Bot. 2004;91:889–898. doi: 10.3732/ajb.91.6.889. PubMed DOI

Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss GM, Trávníček P, Schönswetter P. Complex distribution patterns of di-, tetra-, and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae) Am J Bot. 2007;94:1391–1401. doi: 10.3732/ajb.94.8.1391. PubMed DOI

Halverson K, Heard SB, Nason JD, Stireman JO. Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae) Am J Bot. 2008;95:50–58. doi: 10.3732/ajb.95.1.50. PubMed DOI

Hülber K, Sonnleitner M, Flatscher R, Berger A, Dobrovsky R, et al. Ecological segregation drives fine-scale cytotype distribution of Senecio carniolicus in the Eastern Alps. Preslia. 2009;81:309–319. PubMed PMC

Šingliarová B, Chrtek J, Plačková I, Mráz P. Allozyme variation in diploid, polyploid and ploidy-mixed populations of the Pilosella alpicola group (Asteraceae): relation to morphology, origin of polyploids and breeding system. Folia Geobot. 2011;46:387–410. doi: 10.1007/s12224-011-9102-0. DOI

Bretagnolle F, Thompson JD. Gametes with the somatic chromosome number: mechanism of their formation and role in the evolution of autopolyploid plants. New Phytol. 1995;129:1–22. doi: 10.1111/j.1469-8137.1995.tb03005.x. PubMed DOI

Felber F, Bever JD. Effect of triploid fitness on the coexistence of diploids and tetraploids. Biol J Linn Soc Lond. 1997;60:95–106. doi: 10.1111/j.1095-8312.1997.tb01485.x. DOI

Köhler C, Mittelsten Scheid O, Erilova A. The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet. 2010;26:142–148. doi: 10.1016/j.tig.2009.12.006. PubMed DOI

Petit C, Lesbros P, Ge X, Thompson JD. Variation in flowering phenology and selfing rate across a contact zone between diploid and tetraploid Arrhenatherum elatius (Poaceae) Heredity. 1997;79:31–40. doi: 10.1038/hdy.1997.120. DOI

Orr HA, Presgraves DC. Speciation by postzygotic isolation: forces, genes and molecules. Bioessays. 2000;22:1085–1094. doi: 10.1002/1521-1878(200012)22:12<1085::AID-BIES6>3.0.CO;2-G. PubMed DOI

Husband BC, Sabara HA. Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae) New Phytol. 2004;161:703–713. doi: 10.1046/j.1469-8137.2004.00998.x. PubMed DOI

Rieseberg LH, Willis JH. Plant speciation. Science. 2007;317:910–914. doi: 10.1126/science.1137729. PubMed DOI PMC

Jersáková J, Castro S, Sonk N, Milchreit K, Schödelbauerová I, Tolasch T, et al. Absence of pollinator-mediated premating barriers in mixed-ploidy populations of Gymnadenia conopsea s.l. (Orchidaceae) Evol Ecol. 2010;24:1199–1218. doi: 10.1007/s10682-010-9356-7. DOI

Husband BC. The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biol J Linn Soc Lond. 2004;82:537–546. doi: 10.1111/j.1095-8312.2004.00339.x. DOI

Trávníček P, Dočkalová Z, Rosenbaumová R, Kubátová B, Szeląg Z, Chrtek J. Bridging global and microregional scales: ploidy distribution in Pilosella echioides (Asteraceae) in Central Europe. Ann Bot. 2011;107:443–454. doi: 10.1093/aob/mcq260. PubMed DOI PMC

Gustafsson A. Polyploidy, life-form and vegetative reproduction. Hereditas. 1948;34:1–22. doi: 10.1111/j.1601-5223.1948.tb02824.x. DOI

Stebbins GL. Variation and evolution in plants. New York: Columbia University Press; 1950.

Herben T, Suda J, Klimešová, J. Polyploid species rely on vegetative reproduction more than diploids: re-examination of the old hypothesis. Ann Bot. doi: 10.1093/aob/mcx009. PubMed PMC

Eckert CG, Lui K, Bronson K, Corradini P, Bruneau A. Population genetic consequences of extreme variation in sexual and clonal reproduction in an aquatic plant. Mol Ecol. 2003;12:331–344. doi: 10.1046/j.1365-294X.2003.01737.x. PubMed DOI

Keeler KH. Impact of intraspecific polyploidy in Andropogon gerardii (Poaceae) populations. Am Midl Natur. 2004;152:63–74. doi: 10.1674/0003-0031(2004)152[0063:IOIPIA]2.0.CO;2. DOI

Baldwin SJ, Husband BC. The association between polyploidy and clonal reproduction in diploid and tetraploid Chamerion angustifolium. Mol Ecol. 2013;22:1806–1819. doi: 10.1111/mec.12217. PubMed DOI

Futuyma DJ. Evolutionary biology. 3. Sunderland: Sinauer Assoc Inc; 1998.

Schluter D. Ecology and the origin of species. Trends Ecol Evol. 2001;16:372–380. doi: 10.1016/S0169-5347(01)02198-X. PubMed DOI

Burton TL, Husband BC. Fitness differences among diploids, tetraploids and their triploid progeny in Chamerion angustifolium: Mechanisms of inviability and implications for polyploidy evolution. Evolution. 2000;54:1182–1191. doi: 10.1111/j.0014-3820.2000.tb00553.x. PubMed DOI

Burton TL, Husband BC. Fecundity and offspring ploidy in matings among diploid, triploid and tetraploid Chamerion angustifolium (Onagraceae): consequences for tetraploid establishment. Heredity. 2001;87:573–582. doi: 10.1046/j.1365-2540.2001.00955.x. PubMed DOI

Šingliarová B, Hodálová I, Mráz P. Biosystematic study of the diploid-polyploid Pilosella alpicola group with variation in breeding system: patterns and processes. Taxon. 2011;60:450–470.

Husband BC, Schemske DW. Cytotype distribution at a diploid-tetraploid hybrid zone in Chamerion (Epilobium) angustifolium (Onagraceae) Am J Bot. 1998;85:1688–1694. doi: 10.2307/2446502. PubMed DOI

Bräutigam S. Hieracium L. In: Meusel H, Jäger EJ, editors. Vergleichende Chorologie der zentraleuropäischen Flora 3. Jena: Gustav Fischer; 1992. pp. 325–333.

Peckert T, Chrtek J. Mating interactions between coexisting diploid, triploid and tetraploid cytotypes of Hieracium echioides (Asteraceae) Folia Geobot. 2006;41:323–334. doi: 10.1007/BF02904945. DOI

Matzk F, Meister A, Schubert I. An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J. 2000;21:97–108. doi: 10.1046/j.1365-313x.2000.00647.x. PubMed DOI

Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z, editors. Methods in cell biology: flow cytometry. San Diego: Academic; 1990. pp. 105–110. PubMed

Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2:2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI

Leong-Škorničková J, Šída O, Jarolímová V, Sabu M, Fér T, et al. Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae) Ann Bot. 2007;100:505–526. doi: 10.1093/aob/mcm144. PubMed DOI PMC

Herben T, Trávníček P, Chrtek J. Reduced and unreduced gametes combine almost freely in a multiploidy system. Persp Pl Ecol Evol Syst. 2016;18:15–22. doi: 10.1016/j.ppees.2015.12.001. DOI

Husband BC, Schemske DW. The effect of inbreeding in diploid and tetraploid populations of Epilobium angustifolium (Onagraceae): implications of for the genetic basis of inbreeding depression. Evolution. 1997;51:737–746. doi: 10.2307/2411150. PubMed DOI

Husband BC, Ozimec B, Martin SL, Pollock L. Mating consequences of polyploid evolution in flowering plants: current trends and insights from synthetic polyploids. Int J Plant Sci. 2008;169:195–206. doi: 10.1086/523367. DOI

Baldwin SJ, Husband BC. Genome duplication and the evolution of conspecific pollen precedence. Proc R Soc Lond B Biol Sci. 2011;278:2011–2017. doi: 10.1098/rspb.2010.2208. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...