Widespread co-occurrence of multiple ploidy levels in fragile ferns (Cystopteris fragilis complex; Cystopteridaceae) probably stems from similar ecology of cytotypes, their efficient dispersal and inter-ploidy hybridization
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30541055
PubMed Central
PMC6526313
DOI
10.1093/aob/mcy219
PII: 5240163
Knihovny.cz E-zdroje
- Klíčová slova
- Cystopteris fragilis, Bladder ferns, Cx value, contact zone, cytotype coexistence, ecological preferences, flow cytometry, genome size, ploidy distribution, pteridophytes,
- MeSH
- ekologie MeSH
- hybridizace genetická MeSH
- kapradiny * MeSH
- lidé MeSH
- ploidie MeSH
- polyploidie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND AND AIMS: Polyploidy has played an important role in the evolution of ferns. However, the dearth of data on cytotype diversity, cytotype distribution patterns and ecology in ferns is striking in comparison with angiosperms and prevents an assessment of whether cytotype coexistence and its mechanisms show similar patterns in both plant groups. Here, an attempt to fill this gap was made using the ploidy-variable and widely distributed Cystopteris fragilis complex. METHODS: Flow cytometry was used to assess DNA ploidy level and monoploid genome size (Cx value) of 5518 C. fragilis individuals from 449 populations collected over most of the species' global distributional range, supplemented with data from 405 individuals representing other related species from the complex. Ecological preferences of C. fragilis tetraploids and hexaploids were compared using field-recorded parameters and database-extracted climate data. KEY RESULTS: Altogether, five different ploidy levels (2x, 4x, 5x, 6x, 8x) were detected and three species exhibited intraspecific ploidy-level variation: C. fragilis, C. alpina and C. diaphana. Two predominant C. fragilis cytotypes, tetraploids and hexaploids, co-occur over most of Europe in a diffuse, mosaic-like pattern. Within this contact zone, 40 % of populations were mixed-ploidy and most also contained pentaploid hybrids. Environmental conditions had only a limited effect on the distribution of cytotypes. Differences were found in the Cx value of tetraploids and hexaploids: between-cytotype divergence was higher in uniform-ploidy than in mixed-ploidy populations. CONCLUSIONS: High ploidy-level diversity and widespread cytotype coexistence in the C. fragilis complex match the well-documented patterns in some angiosperms. While ploidy coexistence in C. fragilis is not driven by environmental factors, it could be facilitated by the perennial life-form of the species, its reproductive modes and efficient wind dispersal of spores. Independent origins of hexaploids and/or inter-ploidy gene flow may be expected in mixed-ploidy populations according to Cx value comparisons.
Department of Botany Faculty of Science Charles University Benátská Praha Czech Republic
Institute of Botany The Czech Academy of Sciences Zámek Průhonice Czech Republic
University Herbarium and Department of Integrative Biology University of California Berkeley CA USA
Zobrazit více v PubMed
Baack EJ. 2005. To succeed globally, disperse locally: effects of local pollen and seed dispersal on tetraploid establishment. Heredity 94: 538–546. PubMed
Barker M. 2013. Karyotype and genome evolution in pteridophytes. In: Greilhuber J, Doležel J, Wendel JF eds. Plant genome diversity, vol. 2 Vienna: Springer-Verlag, 245–353.
Blasdell RF. 1963. A monographic study of the fern genus Cystopteris. Memoirs of the Torrey Botanical Club 21: 1–102.
Buggs RJA, Pannell JR. 2007. Ecological differentiation and diploid superiority across a moving ploidy contact zone. Evolution 61: 125–140. PubMed
Čertner M, Fenclová E, Kúr P, et al. . 2017. Evolutionary dynamics of mixed-ploidy populations in an annual herb: dispersal, local persistence and recurrent origins of polyploids. Annals of Botany 120: 303–315. PubMed PMC
Chang Y, Li J, Lu S, Schneider H. 2013. Species diversity and reticulate evolution in the Asplenium normale complex (Aspleniaceae) in China and adjacent areas. Taxon 62: 673–687. PubMed
Chrtek J, Herben T, Rosenbaumová R, et al. . 2017. Cytotype coexistence in the field cannot be explained by inter-cytotype hybridization alone: linking experiments and computer simulations in the sexual species Pilosella echioides (Asteraceae). BMC Evolutionary Biology 17: 87. PubMed PMC
Clark J, Hidalgo O, Pellicer J, et al. . 2016. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytologist 210: 1072–1082. PubMed
Coyne JA, Orr HA. 2004. Speciation. Sunderland, MA: Sinauer Associates, Inc.
Dauphin B, Grant JR, Farrar DR, Rothfels CJ. 2018. Rapid allopolyploid radiation of moonwort ferns (Botrychium; Ophioglossaceae) revealed by PacBio sequencing of homologous and homeologous nuclear regions. Molecular Phylogenetics and Evolution 120: 342–353. PubMed
Doležel J, Sgorbati S, Lucretti S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85: 625–631.
Doležel J, Geilhuber J, Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233–2244. PubMed
Duchoslav M, Šafářová L, Krahulec F. 2010. Complex distribution patterns, ecology and coexistence of ploidy levels of Allium oleraceum (Alliaceae) in the Czech Republic. Annals of Botany 105: 719–735. PubMed PMC
Ekrt L, Koutecký P. 2016. Between sexual and apomictic: unexpectedly variable sporogenesis and production of viable polyhaploids in the pentaploid fern of the Dryopteris affinis agg. (Dryopteridaceae). Annals of Botany 117: 97–106. PubMed PMC
Ekrt L, Štech M. 2008. A morphometric study and revision of the Asplenium trichomanes group in the Czech Republic. Preslia 80: 325–347.
Ekrt L, Holubová R, Trávníček P, Suda J. 2010. Species boundaries and frequency of hybridization in the Dryopteris carthusiana (Dryopteridaceae) complex: a taxonomic puzzle resolved using genome size data. American Journal of Botany 97: 1208–1219. PubMed
Felber F. 1991. Establishment of a tetraploid cytotype in a diploid population: effect of relative fitness of the cytotypes. Journal of Evolutionary Biology 4: 195–207.
Fraser-Jenkins CR. 2008. Taxonomic revision of three hundred Indian subcontinental pteridophytes: with a revised census list; a new picture of fern-taxonomy and nomenclature in the Indian subcontinent. Bishen Singh Mahendra Pal Singh.
Gämperle E, Schneller JJ. 2002. Phenotypic and isozyme variation in Cystopteris fragilis (Pteridophyta) along an altitudinal gradient in Switzerland. Flora 197: 203–213.
Glennon KL, Ritchie ME, Segraves KA. 2014. Evidence for shared broad‐scale climatic niches of diploid and polyploid plants. Ecology Letters 17: 574–582. PubMed
Greilhuber J. 2005. Intraspecific variation in genome size in angiosperms: identifying its existence. Annals of Botany 95: 91–98. PubMed PMC
Grusz AL, Windham MD, Yatskievych G, Huiet L, Gastony GJ, Pryer KM. 2014. Patterns of diversification in the xeric-adapted fern genus Myriopteris (Pteridaceae). Systematic Botany 39: 698–714.
Hanzl M, Kolář F, Nováková D, Suda J. 2014. Nonadaptive processes governing early stages of polyploid evolution: insights from a primary contact zone of relict serpentine Knautia arvensis (Caprifoliaceae). American Journal of Botany 101: 935–945. PubMed
Haufler CH, Windham MD. 1991. New species of North American Cystopteris and Polypodium, with comments on their reticulate relationships. American Fern Journal 81: 7–23.
Haufler CH, Windham MD, Britton DM, Robinson SJ. 1985. Triploidy and its evolutionary significance in Cystopteris protrusa. Canadian Journal of Botany 63: 1855–1863.
Haufler CH, Moran RC, Windham MD. 1993. Cystopteris. Flora of North America, Vol. 2 New York: Oxford University Press, 263–270.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.
Hovenkamp P. 1990. The significance of rhizome morphology in the systematics of the Polypodiaceous ferns (sensu stricto). American Fern Journal 80: 33–43.
Hülber K, Sonnleitner M, Suda J, et al. . 2015. Ecological differentiation, lack of hybrids involving diploids, and asymmetric gene flow between polyploids in narrow contact zones of Senecio carniolicus (syn. Jacobaea carniolica, Asteraceae). Ecology and Evolution 5: 1224–1234. PubMed PMC
Husband BC. 2000. Constraints on polyploid evolution: a test of the minority cytotype exclusion principle. Proceedings of the Royal Society B: Biological Sciences 267: 217–223. PubMed PMC
Husband BC, Ozimec B, Martin SL, Pollock L. 2008. Mating consequences of polyploid evolution in flowering plants: current trends and insights from synthetic polyploids. International Journal of Plant Sciences 169: 195–206.
Kawakami SM, Kawakami S, Kato J, Kondo K, Smirnov SV, Damdinsuren O. 2010. Cytological study of a fern Cystopteris fragilis in Mongolian Altai. Chromosome Botany 5: 1–3.
Kolář F, Čertner M, Suda J, Schönswetter P, Husband BC. 2017. Mixed-ploidy species: progress and opportunities in polyploid research. Trends in Plant Science 22: 1041–1055. PubMed
Kreiner JM, Kron P, Husband BC. 2017. Evolutionary dynamics of unreduced gametes. Trends in Genetics 33: 583–593. PubMed
Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, Tank DC, Soltis PS. 2018. Impact of whole-genome duplication events on diversification rates in angiosperms. American Journal of Botany 105: 348–363. PubMed
Laport RG, Minckley RL, Ramsey J. 2016. Ecological distributions, phenological isolation, and genetic structure in sympatric and parapatric populations of the Larrea tridentata polyploid complex. American Journal of Botany 103: 1358–1374. PubMed
Leitch IJ, Bennett MD. 2004. Genome downsizing in polyploid plants. Biological Journal of the Linnean Society 82: 651–663.
Levin DA. 1975. Minority cytotype exclusion in local plant populations. Taxon 24: 35–43.
Levin DA. 2002. The role of chromosomal change in plant evolution. Oxford: Oxford University Press.
Liu HM, Russell SR, Vogel J, Schneider H. 2018. Inferring the potential of plastid DNA-based identification of derived ferns: a case study on the Asplenium trichomanes aggregate in Europe. Plant Systematics and Evolution 304: 1009–1022.
Manton I. 1950. Problems of cytology and evolution in the Pteridophyta. Cambridge: Cambridge University Press.
Manzaneda AJ, Rey PJ, Bastida JM, Weiss‐Lehman C, Raskin E, Mitchell‐Olds T. 2012. Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytologist 193: 797–805. PubMed PMC
McAllister C, Blaine R, Kron P, et al. . 2015. Environmental correlates of cytotype distribution in Andropogon gerardii (Poaceae). American Journal of Botany 102: 92–102. PubMed
Moran RC. 1982. The Asplenium trichomanes complex in the United States and adjacent Canada. American Fern Journal 72: 5–11.
Nakato N, Kato M. 2005. Cytogeography of the Adiantum pedatum complex (Pteridaceae, Subfamily Adiantoideae). Acta Phytotaxonomica et Geobotanica 56: 85–96.
Parks JC, Dyer AF, Lindsay S. 2000. Allozyme, spore and frond variation in some Scottish populations of the ferns Cystopteris dickieana and Cystopteris fragilis. Edinburgh Journal of Botany 57: 83–105.
Petit C, Lesbros P, Ge X, Thompson JD. 1997. Variation in flowering phenology and selfing rate across a contact zone between diploid and tetraploid Arrhenatherum elatius (Poaceae). Heredity 79: 31–40.
Petit C, Bretagnolle F, Felber F. 1999. Evolutionary consequences of diploid–polyploid hybrid zones in wild species. Trends in Ecology & Evolution 14: 306–311. PubMed
PPG I 2016. A community-derived classification for extant lycopods and ferns. Journal of Systematics and Evolution 54: 563–603.
R Core Team 2016. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Ramsey J. 2007. Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98: 143–150. PubMed
Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29: 467–501.
Rothfels CJE. 2012. Phylogenetics of Cystopteridaceae: reticulation and divergence in a cosmopolitan fern family. PhD Thesis, Duke University, Durham.
Rothfels CJ, Windham MD, Pryer KM. 2013. A plastid phylogeny of the cosmopolitan fern family Cystopteridaceae (Polypodiopsida). Systematic Botany 38: 295–306.
Rothfels CJ, Johnson AK, Windham MD, Pryer KM. 2014. Low-copy nuclear data confirm rampant allopolyploidy in the Cystopteridaceae (Polypodiales). Taxon 63: 1026–1036.
Rothfels CJ, Pryer KM, Li F-W. 2017. Next-generation polyploid phylogenetics: rapid resolution of hybrid polyploid complexes using PacBio single-molecule sequencing. New Phytologist 213: 413–429. PubMed
Schneider H, Liu HM, Chang YF, et al. . 2017. Neo‐ and paleopolyploidy contribute to the species diversity of Asplenium–the most species‐rich genus of ferns. Journal of Systematics and Evolution 55: 353–364.
Sessa EB, Testo WL, Watkins JE. 2016. On the widespread capacity for, and functional significance of, extreme inbreeding in ferns. New Phytologist 211: 1108–1119. PubMed
Shinohara W, Ushio Y, Seo A, et al. . 2010. Evidence for hybrid origin and segmental allopolyploidy in eutetraploid and aneutetraploid Lepisorus thunbergianus (Polypodiaceae). Systematic Botany 35: 20–29.
Soltis DE, Soltis PS, Tate JA. 2003. Advances in the study of polyploidy since plant speciation: research review. New Phytologist 161: 173–191.
Soltis DE, Visger CJ, Marchant DB, Soltis PS. 2016. Polyploidy: pitfalls and paths to a paradigm. American Journal of Botany 103: 1223–1235. PubMed
Tayalé A, Parisod C. 2013. Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenetic and Genome Resources 140: 79–96. PubMed
ter Braak C, Šmilauer P. 2012. Canoco reference manual and user’s guide: software for ordination, version 5.0. Ithaca: Microcomputer Power.
Trávníček P, Kubátová B, Čurn V, et al. . 2011. Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Annals of Botany 107: 77–87. PubMed PMC
Trewick SA, Morgan-Richards M, Russell SJ, et al. . 2002. Polyploidy, phylogeography and Pleistocene refugia of the rockfern Asplenium ceterach: evidence from chloroplast DNA. Molecular Ecology 11: 2003–2012. PubMed
Vida G. 1974. Genome analysis of the European Cystopteris fragilis complex: 1. Tetraploid taxa. Acta Botanica Academiae Scientiarum Hungaricae 20: 181–192.
Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences USA 106: 13875–13879. PubMed PMC
Yamauchi A, Hosokawa A, Nagata H, Shimoda M. 2004. Triploid bridge and role of parthenogenesis in the evolution of autopolyploidy. The American Naturalist 164: 101–112. PubMed