Between sexual and apomictic: unexpectedly variable sporogenesis and production of viable polyhaploids in the pentaploid fern of the Dryopteris affinis agg. (Dryopteridaceae)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26476395
PubMed Central
PMC4701151
DOI
10.1093/aob/mcv152
PII: mcv152
Knihovny.cz E-zdroje
- Klíčová slova
- Apogamy, Dryopteris affinis agg., apomixis, diplospores, ferns, flow cytometry, frequency of hybridization, hybrid fertility, plant mating system, spore abortion percentage, sporogenesis,
- MeSH
- apomixie * MeSH
- délka genomu MeSH
- DNA rostlinná metabolismus MeSH
- Dryopteris genetika fyziologie MeSH
- gametogeneze rostlin genetika fyziologie MeSH
- genom rostlinný MeSH
- haploidie * MeSH
- klíčení MeSH
- křížení genetické MeSH
- průtoková cytometrie MeSH
- spory cytologie fyziologie MeSH
- tetraploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
BACKGROUND AND AIMS: In ferns, apomixis is an important mode of asexual reproduction. Although the mechanisms of fern reproduction have been studied thoroughly, most previous work has focused on cases in which ferns reproduce either exclusively sexually or exclusively asexually. Reproduction of ferns with potentially mixed systems and inheritance of apomixis remains largely unknown. This study addresses reproduction of the pentaploid Dryopteris × critica, a hybrid of triploid apomictic D. borreri and tetraploid sexual D. filix-mas. METHODS: Spore size, abortion percentage and number of spores per sporangium were examined in pentaploid plants of D. × critica grown in an experimental garden. The sporangial content of leaf segments was cultivated on an agar medium, and DNA ploidy levels were estimated by DAPI flow cytometry in 259 gametophytes or sporophytes arising from the F2 generation of the pentaploid hybrid. KEY RESULTS: The hybrid is partly fertile (89-94% of aborted spores) and shows unstable sporogenesis with sexual and apomictic reproduction combined. The number of spores per sporangium varied from approx. 31 to 64. Within a single sporangium it was possible to detect formation of either only aborted spores or various mixtures of aborted and well-developed reduced spores and unreduced diplospores. The spores germinated in viable gametophytes with two ploidy levels: pentaploid (5x, from unreduced spores) and half of that (approx. 2·5x, from reduced spores). Moreover, 2-15% of gametophytes (both 2·5x and 5x) formed a viable sporophyte of the same ploidy level due to apogamy. CONCLUSIONS: This study documents the mixed reproductive mode of a hybrid between apomictic and sexual ferns. Both sexual reduced and apomictic unreduced spores can be produced by a single individual, and even within a single sporangium. Both types of spores give rise to viable F2 generation gametophytes and sporophytes.
Zobrazit více v PubMed
Barrington DS, Haufler HC, Werth CR. 1989. Hybridization, reticulation, and species concepts in the ferns. American Fern Journal 79: 55–64.
Bär A, Eschelmüller A. 2010. Farnstudien: Einige pentaploide Bastarde von Dryopteris filix-mas mit triploiden Vertretern der Dryopteris-Gruppe. Berichte der Bayerischen Botanischen Gesellschaft 80: 119–140.
Benaglia T, Chauveau D, Hunter DR, Young D. 2009. Mixtools: an R package for analyzing finite mixture models. Journal of Statistical Software 32: 1–29.
Braithwaite AF. 1964. A new type of apogamy in ferns. New Phytologist 63: 293–305.
Chao YS, Liu HY, Ching YC, Chiou WL. 2012. Polyploidy and speciation in Pteris (Pteridaceae). Journal of Botany 2012: 1–6. doi:10.1155/2012/817920.
Doležel J, Sgorbati S, Lucretti S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85: 625–631.
Doležel J, Greilhuber J, Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233–2244. PubMed
Döpp W. 1939. Cytologische und genetische Untersuchungen innerhalb der Gattung Dryopteris. Planta 29: 481–533.
Döpp W. 1955. Experimentell erzeugte Bastarde zwischen Dryopteris filix-mas (L.) Schott und D paleacea. (Sw.) C. Chr. Planta 46: 70–91.
Dyer RJ, Savolainen V, Schneider H. 2012. Apomixis and reticulate evolution in the Asplenium monanthes fern complex. Annals of Botany 110: 1515–1529. PubMed PMC
Dyer RJ, Pellicer J, Savolainen V, Leitch IJ, Schneider H. 2013. Genome size expansion and the relationship between nuclear DNA content and spore size in the Asplenium monanthes fern complex (Aspleniaceae). BMC Plant Biology 13: 219 doi:10.1186/1471-2229-13-219. PubMed PMC
Eschelmüller A. 1998. Keimversuche mit Sporen der triploiden Sippen von Dryopteris affinis und ihren Bastarden mit Dryopteris filix-mas. Mitteilungen des Naturwissenschaftlichen Arbeitskreises Kempten 36: 47–78.
Ekrt L, Trávníček P, Jarolímová V, Vít P, Urfus T. 2009. Genome size and morphology of the Dryopteris affinis group in Central Europe. Preslia 81: 261–280.
Ekrt L, Holubová R, Trávníček P, Suda J. 2010. Species boundaries and frequency of hybridization in the Dryopteris carthusiana (Dryopteridaceae) complex: a taxonomic puzzle resolved using genome size data. American Journal of Botany 97: 1208–1219. PubMed
Fraser-Jenkins CR. 2007. The species and subspecies in the Dryopteris affinis group. Fern Gazette 18: 1–26.
Gabriel y Galán JM, Prada C. 2011. Pteridophyte spores viability. In: Fernandéz H, Kumar A, Revilla MA, eds. Working with ferns: issues and applications. London: Springer, 193–205.
Gastony GJ, Haufler CH. 1976. Chromosome numbers and apomixis in the fern genus Bommeria (Gymnogrammaceae). Biotropica 8: 1–11.
Gastony GJ, Windham MD. 1989. Species concepts in pteridophytes: the treatment and definition of agamosporous species. American Fern Journal 79: 65–77.
Grusz AL, Windham MD, Pryer KM. 2009. Deciphering the origins of apomictic polyploids in the Cheilanthes yavapensis complex (Pteridaceae). American Journal of Botany 96: 1636–1645. PubMed
Hickok LG, Klekowski EJ. 1973. Abnormal reductional and nonreductional meiosis in Ceratopteris: alternatives to homozygosity and hybrid sterility in homosporous ferns. American Journal of Botany 60: 1010–1022.
Huang YM, Hsu SY, Hsieh TH, Chou HM, Chiou WL. 2011. Three Pteris species (Pteridaceae: Pteridophyta) reproduce by apogamy. Botanical Studies 52: 79–87.
Hunt HV, Ansell SW, Russell SJ, Schneider H, Vogel JC. 2011. Dynamics of polyploid formation and establishment in the allotetraploid rock fern Asplenium majoricum. Annals of Botany 108: 143–157. PubMed PMC
Ishikawa H, Ito M, Watano Y, Kurita S. 2003. Electrophoretic evidence for homologous chromosome pairing in the apogamous fern species Dryopteris nippoensis (Dryopteridaceae). Journal of Plant Research 116: 165–167. PubMed
Krahulcová A, Rotreklová O, Krahulec F. 2013. The detection, rate and manifestation of residual sexuality in apomictic population of Pilosella (Asteraceae, Lactuceae). Folia Geobotanica 49: 239–258.
Lin SJ, Kato M, Iwatsuki K. 1992. Diploid and triploid offspring of triploid agamosporous fern Dryopteris pacifica. The Botanical Magazine 105: 443–452.
Liu HM, Dyer RJ, Guo ZY, Meng Z, Li JH, Schneider H. 2012. The evolutionary dynamics of apomixis in ferns: a case study from polystichoid ferns. Journal of Botany 2012: 1–11, doi:10.1155/2012/510478.
Lovis JD. 1977. Evolutionary patterns and processes in ferns. Advances in Botanical Research 4: 229–415.
Manton I. 1950. Problems of cytology and evolution in the Pteridophyta. Cambridge: Cambridge University Press.
Nakato N, Ootsuki R, Murakami N, Masuyama S. 2012. Two types of partial fertility in a diploid population of the fern Thelypteris decursive-pinnata (Thelypteridaceae). Journal of Plant Research 125: 465–474. PubMed
Ootsuki R, Sato H, Nakato N, Murakami N. 2012. Evidence of genetic segregation in the apogamous fern species Cyrtomium fortunei (Dryopteridaceae). Journal of Plant Research 125: 605–612. PubMed
Ozias-Akins P. 2006. Apomixis: developmental characteristics and genetics. Critical Reviews in Plant Sciences 25: 199–214.
Park C, Kato M. 2003. Apomixis in the interspecific triploid hybrid fern Cornopteris christenseniana (Woodsiaceae). – Journal of Plant Research 116: 93–103. PubMed
Pinter I. 1995. Progeny studies of the fern hybrid Polystichum × bicknellii. Fern Gazette 15: 25–40.
Quintanilla LG, Escudero A. 2006. Spore fitness components do not differ between diploid and allotetraploid species of Dryopteris (Dryopteridaceae). Annals of Botany 98: 609–618. PubMed PMC
R Development Core Team . 2014. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Rabe EW, Haufler CH. 1992. Incipient polyploid speciation in the maidenhair fern (Adiantum pedatum; Adiantaceae)? American Journal of Botany 79: 701–707.
Regalado Gabancho L, Prada C, Gabriel y Galán JM. 2010. Sexuality and apogamy in the Cuban Asplenium auritum–monodon complex (Aspleniaceae). Plant Systematics and Evolution 289: 137–146.
Reichstein T. 1981. Hybrids in European Aspleniaceae (Pteridophyta). Botanica Helvetica 91: 89–139.
Schneller J. 1975. Untersuchungen an einheimischen Farnen, insbesondere der Dryopteris filix-mas-Gruppe. 2. Teil, Cytologische Untersuchungen. Berichte der Schweizerischen Botanischen Gesellschaft 85: 1–17.
Schneller J, Krattinger K. 2010. Genetic composition of Swiss and Austrian members of the apogamous Dryopteris affinis complex (Dryopteridaceae, Polypodiopsida) based on ISSR markers. Plant Systematics and Evolution 286: 1–6.
Stanier RY, Kuniswawa R, Mandel R. 1971. Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriological Review 35: 171–205. PubMed PMC
Vida G, Reichstein T. 1975. Taxonomic problems in the fern genus Polystichum caused by hybridization. In: Walters SM, ed. Floristic and taxonomic studies. Faringdon, UK: E. W. Classey, 126–135.
Wagner WH, Chen KL. 1965. Abortion of spores and sporangia as a tool in the detection of Dryopteris hybrids. American Fern Journal 55: 9–29.
Walker TG. 1962. Cytology and evolution in the fern genus Pteris L. Evolution 16: 27–43.
Walker TG. 1979. The cytogenetics of ferns. In: Dyer AF, ed. The experimental biology of ferns. London: Academic Press, 87–132.
Walker TG. 1984. Chromosomes and evolution in pteridophytes. In: Sharma AK, Sharma A, eds. Chromosomes in evolution of eukaryotic groups, vol. 2 Boca Raton, FL: CRC Press, 103–141.
Windham MD, Yatskievych G. 2003. Chromosome studies of cheilanthoid ferns (Pteridaceae: Cheilanthoideae) from the western United States and Mexico. American Journal of Botany 90: 1788–1800. PubMed
Yatabe Y, Yamamota K, Tsutsumi C, Shinohara W, Murakami N, Kato M. 2011. Fertility and precocity of Osmunda × intermedia offspring in culture. Journal of Plant Research 124: 265–268. PubMed
Zhang R, Liu T, Wu W, et al. 2013. Molecular evidence for natural hybridization in the mangrove fern genus Acrostichum. BMC Plant Biology 13: 74, doi:10.1186/1471-2229-13-74. PubMed PMC
Insights into the evolutionary history and widespread occurrence of antheridiogen systems in ferns