An experimental assessment of competitive interactions between sexual and apomictic fern gametophytes using Easy Leaf Area
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35495190
PubMed Central
PMC9039791
DOI
10.1002/aps3.11466
PII: APS311466
Knihovny.cz E-zdroje
- Klíčová slova
- Dryopteris, apomixis, competition, monoculture, pteridophyte, spore, wood fern,
- Publikační typ
- časopisecké články MeSH
PREMISE: Few studies have explored competition in fern gametophyte populations. One limiting factor is the tedious measurement of gametophyte size as a proxy for biomass in these small plants. Here, an alternative approach of estimating the number of green pixels from photos was employed to measure the competitive interactions among apomictic and sexual Dryopteris gametophytes. METHODS: We cultivated the gametophytes of two apomictic (diploid and triploid) and one sexual (tetraploid) Dryopteris species in monocultures and in two-species mixtures in the ratios 1 : 1 and 1 : 3. The total gametophyte cover of each population originating from 20 spores was assessed using Easy Leaf Area. Assessments were performed weekly between weeks 4 and 10 of cultivation. Additionally, during week 5, the cover of each species in each mixture was estimated separately. RESULTS: We identified a positive correlation between gametophyte size and ploidy level as well as sexual reproduction. The performance of the tested species in mixtures was dependent on the competitor species identity, indicating the importance of competition between gametophytes. DISCUSSION: The methods outlined can be used for a rapid assessment of fern gametophyte cover in large gametophyte populations. Ploidy level and reproduction type seem to play a major role in the competitive abilities of fern gametophytes, but more research is needed on this topic.
Zobrazit více v PubMed
Abràmoff, M. D. , Magalhães P. J., and Ram S. J.. 2004. Image processing with ImageJ. Biophotonics International 11: 36–42.
Barrington, D. S. , Paris C. A., and Ranker T. A.. 1986. Systematic inferences from spore and stomate size in the ferns. American Fern Journal 76: 149–159.
Barrington, D. S. , Patel N. R., and Southgate M. W.. 2020. Inferring the impacts of evolutionary history and ecological constraints on spore size and shape in the ferns. Applications in Plant Sciences 8: e11339. PubMed PMC
Bates, D. , Mächler M., Bolker B., and Walker S.. 2015. Fitting linear mixed‐effects models using lme4. Journal of Statistical Software 67: 1–48.
Cheng, F. , and Cheng Z.. 2015. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science 6: 1020. PubMed PMC
de Groot, G. A. , During H. J., Maas J. W., Schneider H., Vogel J. C., and Erkens R. H. J.. 2011. Use of rbcL and trnL‐F as a two‐locus DNA barcode for identification of NW‐European ferns: An ecological perspective. PLoS ONE 6: e16371. PubMed PMC
DeSoto, L. , Quintanilla L. G., and Méndez M.. 2008. Environmental sex determination in ferns: Effects of nutrient availability and individual density in Woodwardia radicans . Journal of Ecology 96: 1319–1327.
Diaz, S. , Lavorel S., de Bello F., Quetier F., Grigulis K., and Robson T. M.. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences, USA 104: 20684–20689. PubMed PMC
Dyer, A. F. 1979. The culture of fern gametophytes for experimental investigation. In Dyer A. F. [ed.], The experimental biology of ferns, 253–305. Academic Press, London, United Kingdom.
Easlon, H. M. , and Bloom A. J.. 2014. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences 2: 1400033. PubMed PMC
Ekrt, L. , and Koutecký P.. 2016. Between sexual and apomictic: Unexpectedly variable sporogenesis and production of viable polyhaploids in the pentaploid fern of the Dryopteris affinis agg. (Dryopteridaceae). Annals of Botany 117: 97–106. PubMed PMC
Francesconi, A. 2021. BIMP. Website: https://alessandrofrancesconi.it/projects/bimp/ [accessed 13 February 2022].
Fraser‐Jenkins, C. R. 2007. The species and subspecies in the Dryopteris affinis group. Fern Gazette 18: 1–26.
Ganger, M. , and Sturey T.. 2012. Antheridiogen concentration and spore size predict gametophyte size in Ceratopteris richardii . Botany 90: 175–179.
Ganger, M. T. , Hiles R., Hallowell H., Cooper L., McAllister N., Youngdahl D., Alfieri J., and Ewing S. J.. 2019. A soil bacterium alters sex determination and rhizoid development in gametophytes of the fern Ceratopteris richardii . AoB Plants 11: plz012. PubMed PMC
Greer, G. K. , Dietrich M. A., Devol J. A., and Rebert A.. 2012. The effects of exogenous cytokinin on the morphology and gender expression of Osmunda regalis gametophytes. American Fern Journal 102: 32–46.
Grime, J. P. 1998. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology 86: 902–910.
Haufler, C. H. , Pryer K. M., Schuettpelz E., Sessa E. B., Farrar D. R., Moran R., Schneller J. J., et al. 2016. Sex and the single gametophyte: Revising the homosporous vascular plant life cycle in light of contemporary research. BioScience 66: 928–937.
Hornych, O. , and Ekrt L.. 2017. Spore abortion index (SAI) as a promising tool of evaluation of spore fitness in ferns: An insight into sexual and apomictic species. Plant Systematics and Evolution 303: 497–507.
Hornych, O. , Testo W. L., Sessa E. B., Watkins J. E., Campany C. E., Pittermann J., and Ekrt L.. 2021. Insights into the evolutionary history and widespread occurrence of antheridiogen systems in ferns. New Phytologist 229: 607–619. PubMed PMC
Huang, Y.‐M. , Chiou H.‐M., and Chiou W.‐L.. 2004. Density affects gametophyte growth and sexual expression of Osmunda cinnamomea (Osmundaceae: Pteridophyta). Annals of Botany 94: 229–232. PubMed PMC
Hultén, E. , and Fries M.. 1986. Atlas of North European vascular plants: North of the Tropic of Cancer. Koeltz Botanical Books, Königstein, Germany.
Korpelainen, H. 1994. Growth, sex determination and reproduction of Dryopteris filix‐mas (L.) Schott gametophytes under varying nutritional conditions. Botanical Journal of the Linnean Society 114: 357–366.
Korpelainen, H. 1997. Comparison of gametophyte growth, sex determination and reproduction in three fern species from the tropics. Nordic Journal of Botany 17: 133–143.
Lenth, R. V. 2021. emmeans: Estimated Marginal Means, aka Least‐Squares Means. Website: https://cran.r-project.org/web/packages/emmeans/index.html [accessed 13 February 2022].
Lloyd, R. M. , and Klekowski E. J.. 1970. Spore germination and viability in Pteridophyta: Evolutionary significance of chlorophyllous spores. Biotropica 2: 129–137.
Murashige, T. , and Skoog F.. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.
Näf, U. 1956. The demonstration of a factor concerned with the initiation of antheridia in polypodiaceous ferns. Growth 20: 91–105. PubMed
Nitta, J. H. , Meyer J., Taputuarai R., and Davis C. C.. 2017. Life cycle matters: DNA barcoding reveals contrasting community structure between fern sporophytes and gametophytes. Ecological Monographs 87: 278–296.
Pajarón, S. , Pangua E., Quintanilla L. G., and Jiménez A.. 2015. Influence of water availability on gender determination of gametophytes in a diploid–polyploid complex of a xerophytic fern genus. AoB Plants 7: plv047. PubMed PMC
Pakeman, R. J. , Eastwood A., and Scobie A.. 2011. Leaf dry matter content as a predictor of grassland litter decomposition: A test of the ‘mass ratio hypothesis’. Plant and Soil 342: 49–57.
Pangua, E. , Pajarón S., and Quintanilla L. G.. 2019. Fitness of an allopolyploid rupicolous fern compared with its diploid progenitors: From sporogenesis to sporophyte formation. American Journal of Botany 106: 984–995. PubMed
Petersen, R. L. , and Fairbrothers D. E.. 1980. Reciprocal allelopathy between the gametophytes of Osmunda cinnamomea and Dryopteris intermedia . American Fern Journal 70: 73–78.
Quintanilla, L. G. , DeSoto L., Jimenez A., and Mendez M.. 2007. Do antheridiogens act via gametophyte size? A study of Woodwardia radicans (Blechnaceae). American Journal of Botany 94: 986–990. PubMed
R Development Core Team . 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Website: http://www.R-project.org/ [accessed 13 February 2022].
Regalado Gabancho, L. , Prada C., and Gabriel y Galán J. M.. 2010. Sexuality and apogamy in the Cuban Asplenium auritum–monodon complex (Aspleniaceae). Plant Systematics and Evolution 289: 137–146.
Robinson, D. O. , Coate J. E., Singh A., Hong L., Bush M., Doyle J. J., and Roeder A. H. K.. 2018. Ploidy and size at multiple scales in the Arabidopsis sepal. The Plant Cell 30: 2308–2329. PubMed PMC
Rünk, K. , Moora M., and Zobel M.. 2004. Do different competitive abilities of three fern species explain their different regional abundances? Journal of Vegetation Science 15: 351–356.
Schneller, J. J. 2008. Antheridiogens. In T. A. Ranker and C. H. Haufler [eds.], Biology and evolution of ferns and lycophytes, 134–158. Cambridge University Press, Cambridge, United Kingdom.
Schneller, J. J. , Haufler C. H., and Ranker T. A.. 1990. Antheridiogen and natural gametophyte populations. American Fern Journal 80: 143–152.
Testo, W. L. , and Watkins J. E.. 2013. Understanding mechanisms of rarity in pteridophytes: Competition and climate change threaten the rare fern Asplenium scolopendrium var. americanum (Aspleniaceae). American Journal of Botany 100: 2261–2270. PubMed
Testo, W. L. , Grasso M. S., and Barrington D. S.. 2014. Beyond antheridiogens: Chemical competition between gametophytes of Polypodium appalachianum and Polypodium virginianum . Journal of the Torrey Botanical Society 141: 302–312.
The GIMP Development Team . 2019. GIMP. Website: https://www.gimp.org [accessed 13 February 2022].
Tryon, R. M. , and Vitale G.. 1977. Evidence for antheridogen production and its mediation of a mating system in natural populations of fern gametophytes. Botanical Journal of the Linnean Society 74: 243–249.
Turnbull, L. A. , Levine J. M., Loreau M., and Hector A.. 2013. Coexistence, niches and biodiversity effects on ecosystem functioning. Ecology Letters 16: 116–127. PubMed
Van Nguyen, Q. , Khuat H. T., Nguyen Y.‐N. T., Vu D. T., Bui T.‐H., and Boo K.‐H.. 2020. Drynaria bonii spore culture: Optimization of culture conditions and analysis of gametophyte and sporophyte development. Plant Biotechnology Reports 14: 575–584.
Wagner, W. H. , and Chen K. L.. 1965. Abortion of spores and sporangia as a tool in the detection of Dryopteris hybrids. American Fern Journal 55: 9–29.
Wagner, H. B. , and Long K. E.. 1991. Allelopathic effects of Osmunda cinnamomea on three species of Dryopteris . American Fern Journal 81: 134–138.
Whittier, D. P. 1968. Rate of gametophyte maturation in sexual and apogamous forms of Pellaea glabella . American Fern Journal 58: 12–19.
Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. Springer, New York, New York, USA.
Windham, M. D. , Wolf P. G., and Ranker T. A.. 1986. Factors affecting prolonged spore viability in herbarium collections of three species of Pellaea . American Fern Journal 76: 141–148.
Wright, A. J. , Wardle D. A., Callaway R., and Gaxiola A.. 2017. The overlooked role of facilitation in biodiversity experiments. Trends in Ecology & Evolution 32: 383–390. PubMed
Zhang, Y. , Wang B., Qi S., Dong M., Wang Z., Li Y., Chen S., et al. 2019. Ploidy and hybridity effects on leaf size, cell size and related genes expression in triploids, diploids and their parents in Populus . Planta 249: 635–646. PubMed