• This record comes from PubMed

Optimization of Process Variables in the Drilling of LM6/B4C Composites through Grey Relational Analysis

. 2022 Jul 12 ; 15 (14) : . [epub] 20220712

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

The objective of this investigational analysis was to study the influence of process variables on the response during the drilling of LM6/B4C composite materials. Stir casting was employed to produce the LM6/B4C composites. A Vertical Machining Center (VMC) with a dynamometer was used to drill the holes and to record the thrust force. An L27 orthogonal array was used to carry out the experimental work. A grey relational analysis (GRA) was employed to perform optimization in order to attain the lowest Thrust Force (TF), Surface Roughness (SR) and Burr Height (BH). For minimal responses, the optimum levels of the process variables viz. the feed rate (F), spindle speed (S), drill material (D) and reinforcing percentage (R) were determined. The process variables in the drilling of the LM6/B4C composites were indeed optimized, according to confirmational investigations. The predicted Grey Relational Grade was 0.846, whereas the experimental GRG was 0.865, with a 2.2% error-indicating that the optimization process was valid.

See more in PubMed

Hassan A.M., Alrashdan A., Hayajneh M.T., Mayyas A.T. Prediction of density, porosity and hardness in aluminum–copper-based composite materials using artificial neural network. J. Mater. Process. Technol. 2009;209:894–899. doi: 10.1016/j.jmatprotec.2008.02.066. DOI

Hassan A.M., Mayyas A.T., Alrashdan A., Hayajneh M.T. Wear behavior of Al–Cu and Al–Cu/SiC components produced by powder metallurgy. J. Mater. Sci. 2008;43:5368–5375. doi: 10.1007/s10853-008-2760-5. DOI

Hassan A.M., Hayajneh M., Al-Omari M.A.-H. The Effect of the Increase in Graphite Volumetric Percentage on the Strength and Hardness of Al-4 Weight Percent Mg-Graphite Composites. J. Mater. Eng. Perform. 2002;11:250–255. doi: 10.1361/105994902770344024. DOI

Hayajneh M., Hassan A.M., Alrashdan A., Mayyas A.T. Prediction of tribological behavior of aluminum–copper based composite using artificial neural network. J. Alloy. Compd. 2009;470:584–588. doi: 10.1016/j.jallcom.2008.03.035. DOI

Hayajneh M.T., Hassan A.M., Mayyas A.T. Artificial neural network modeling of the drilling process of self-lubricated aluminum/alumina/graphite hybrid composites synthesized by powder metallurgy technique. J. Alloy. Compd. 2009;478:559–565. doi: 10.1016/j.jallcom.2008.11.155. DOI

Zhong Z.-W. Processes for environmentally friendly and/or cost-effective manufacturing. Mater. Manuf. Process. 2021;36:987–1009. doi: 10.1080/10426914.2021.1885709. DOI

Alem S.A.A., Latifi R., Angizi S., Hassanaghaei F., Aghaahmadi M., Ghasali E., Rajabi M. Microwave sintering of ceramic reinforced metal matrix composites and their properties: A review. Mater. Manuf. Process. 2020;35:303–327. doi: 10.1080/10426914.2020.1718698. DOI

Davim J., António C.C. Optimal drilling of particulate metal matrix composites based on experimental and numerical procedures. Int. J. Mach. Tools Manuf. 2001;41:21–31. doi: 10.1016/S0890-6955(00)00071-7. DOI

Karabulut Ş., Gökmen U., Çinici H. Study on the mechanical and drilling properties of AA7039 composites reinforced with Al2O3/B4C/SiC particles. Compos. Part B Eng. 2016;93:43–55. doi: 10.1016/j.compositesb.2016.02.054. DOI

Davim J.P. Machining Composites Materials. John Wiley & Sons; Hoboken, NJ, USA: 2013.

Davim J.P. Machining of Hard Materials. Springer Science & Business Media; Berlin, Germany: 2011.

Kamble A., Kulkarni S.G. AIP Conference Proceedings. Volume 2105. AIP Publishing LLC; Melville, NY, USA: 2019. Microstructural examination of bagasse ash reinforced waste aluminium alloy matrix composite; p. 020011. DOI

Prasad S.V., Asthana R. Aluminium metal-matrix composites for automotive applications: Tribological considerations. Tribol. Lett. 2004;17:445–453. doi: 10.1023/B:TRIL.0000044492.91991.f3. DOI

Prasad V., Bhat B., Mahajan Y., Ramakrishnan P. Structure–property correlation in discontinuously reinforced aluminium matrix composites as a function of relative particle size ratio. Mater. Sci. Eng. A. 2002;337:179–186. doi: 10.1016/S0921-5093(02)00024-2. DOI

Etemadi R., Wang B., Pillai K.M., Niroumand B., Omrani E., Rohatgi P. Pressure infiltration processes to synthesize metal matrix composites—A review of metal matrix composites, the technology and process simulation. Mater. Manuf. Process. 2018;33:1261–1290. doi: 10.1080/10426914.2017.1328122. DOI

Miracle D. Metal matrix composites—From science to technological significance. Compos. Sci. Technol. 2005;65:2526–2540. doi: 10.1016/j.compscitech.2005.05.027. DOI

Basavarajappa S., Chandramohan G., Rao K.V.N., Radhakrishanan R., Krishnaraj V. Turning of particulate metal matrix composites—review and discussion. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006;220:1189–1204. doi: 10.1243/09544054JEM304. DOI

Kumar N.S., Shankar G.S., Basavarajappa S., Suresh R. Some studies on mechanical and machining characteristics of Al2219/n-B 4 C/MoS 2 nano-hybrid metal matrix composites. Measurement. 2017;107:1–11. doi: 10.1016/j.measurement.2017.05.003. DOI

Ficici F. Evaluation of surface roughness in drilling particle-reinforced composites. Adv. Compos. Lett. 2020;29:2633366X20937711. doi: 10.1177/2633366X20937711. DOI

Ravindranath V., Yerriswamy M., Vivek S., Shankar G.S., Kumar N.S. Drilling of Al2219/B 4 C/Gr metal matrix hybrid composites. Mater. Today Proc. 2017;4:9898–9901. doi: 10.1016/j.matpr.2017.06.290. DOI

Rajmohan T., Palanikumar K., Kathirvel M. Optimization of machining parameters in drilling hybrid aluminium metal matrix composites. Trans. Nonferrous Met. Soc. China. 2012;22:1286–1297. doi: 10.1016/S1003-6326(11)61317-4. DOI

Taşkesen A., Kütükde K. Experimental investigation and multi-objective analysis on drilling of boron carbide reinforced metal matrix composites using grey relational analysis. Measurement. 2014;47:321–330. doi: 10.1016/j.measurement.2013.08.040. DOI

Klocke F., Eisenblätter G. Dry Cutting. CIRP Ann. 1997;46:519–526. doi: 10.1016/S0007-8506(07)60877-4. DOI

Batzer S., Haan D., Rao P., Olson W., Sutherland J. Chip morphology and hole surface texture in the drilling of cast Aluminum alloys. J. Mater. Process. Technol. 1998;79:72–78. doi: 10.1016/S0924-0136(97)00324-5. DOI

Carrilero M., Bienvenido R., Sánchez J., Álvarez M., González A., Marcos M. A SEM and EDS insight into the BUL and BUE differences in the turning processes of AA2024 Al–Cu alloy. Int. J. Mach. Tools Manuf. 2002;42:215–220. doi: 10.1016/S0890-6955(01)00112-2. DOI

Dixit U.S., Sarma D.K., Davim J.P. Environmentally Friendly Machining. Springer Science & Business Media; Berlin, Germany: 2012.

Aamir M., Giasin K., Tolouei-Rad M., Vafadar A. A review: Drilling performance and hole quality of aluminium alloys for aerospace applications. J. Mater. Res. Technol. 2020;9:12484–12500. doi: 10.1016/j.jmrt.2020.09.003. DOI

Rubi C.S., Prakash J.U., Rajkumar C., Mohan A., Muthukumarasamy S. Optimization of process variables in drilling of LM6/fly ash composites using Grey-Taguchi method. Mater. Today Proc. 2022;62:5894–5898. doi: 10.1016/j.matpr.2022.04.627. DOI

Parikh V.K., Badheka V.J., Badgujar A.D., Ghetiya N.D. Fabrication and processing of aluminum alloy metal matrix composites. Mater. Manuf. Process. 2021;36:1604–1617. doi: 10.1080/10426914.2021.1914848. DOI

Ramulu M., Spaulding M. Drilling of Hybrid Titanium Composite Laminate (HTCL) with Electrical Discharge Machining. Materials. 2016;9:746. doi: 10.3390/ma9090746. PubMed DOI PMC

Kalita K., Pal S., Haldar S., Chakraborty S. A Hybrid TOPSIS-PR-GWO Approach for Multi-objective Process Parameter Optimization. Process Integr. Optim. Sustain. 2022:1–16. doi: 10.1007/s41660-022-00256-0. DOI

Rubi C.S., Prakash J.U. Drilling of Hybrid Aluminum Matrix Composites using Grey-Taguchi Method. INCAS Bull. 2020;12:167–174. doi: 10.13111/2066-8201.2020.12.1.16. DOI

Juliyana S.J., Prakash J.U. Drilling parameter optimization of metal matrix composites (LM5/ZrO2) using Taguchi Technique. Mater. Today Proc. 2020;33:3046–3050. doi: 10.1016/j.matpr.2020.03.211. DOI

Bansod A.V., Patil A.P., Kalita K., Deshmukh B.D., Khobragade N. Fuzzy multicriteria decision-making-based optimal Zn–Al alloy selection in corrosive environment. Int. J. Mater. Res. 2020;111:953–963. doi: 10.3139/146.111957. DOI

Prakash J.U., Rubi C.S., Rajkumar C., Juliyana S.J. Multi-objective drilling parameter optimization of hybrid metal matrix composites using grey relational analysis. Mater. Today Proc. 2020;39:1345–1350. doi: 10.1016/j.matpr.2020.04.570. DOI

Shivakoti I., Kalita K., Kibria G., Sharma A., Pradhan B.B., Ghadai R.K. Parametric analysis and multi response optimization of laser surface texturing of titanium super alloy. J. Braz. Soc. Mech. Sci. Eng. 2021;43:1–15. doi: 10.1007/s40430-021-03115-0. DOI

Hassan M.H., Abdullah J., Franz G. Multi-Objective Optimization in Single-Shot Drilling of CFRP/Al Stacks Using Customized Twist Drill. Materials. 2022;15:1981. doi: 10.3390/ma15051981. PubMed DOI PMC

Panchagnula K.K., Sharma J.P., Kalita K., Chakraborty S. CoCoSo method-based optimization of cryogenic drilling on multi-walled carbon nanotubes reinforced composites. Int. J. Interact. Des. Manuf. (IJIDeM) 2022:1–19. doi: 10.1007/s12008-022-00894-1. DOI

Palanikumar K., Muniaraj A. Experimental investigation and analysis of thrust force in drilling cast hybrid metal matrix (Al–15%SiC–4%graphite) composites. Measurement. 2014;53:240–250. doi: 10.1016/j.measurement.2014.03.027. DOI

Kumar G.V., Rao C.S.P., Selvaraj N. Mechanical and Tribological Behavior of Particulate Reinforced Aluminium Metal Matrix Composites–a Review. J. Miner. Mater. Charact. Eng. 2011;10:59–91.

Kalaiselvan K., Murugan N., Parameswaran S. Production and characterization of AA6061–B4C stir cast composite. Mater. Des. 2011;32:4004–4009. doi: 10.1016/j.matdes.2011.03.018. DOI

Prasad B. Investigation into sliding wear performance of zinc-based alloy reinforced with SiC particles in dry and lubricated conditions. Wear. 2007;262:262–273. doi: 10.1016/j.wear.2006.05.004. DOI

Kennedy A. The microstructure and mechanical properties of Al-Si-B4C metal matrix composites. J. Mater. Sci. 2002;37:317–323. doi: 10.1023/A:1013600328599. DOI

Kalita K., Shivakoti I., Ghadai R.K. Optimizing process parameters for laser beam micro-marking using genetic algorithm and particle swarm optimization. Mater. Manuf. Process. 2017;32:1101–1108. doi: 10.1080/10426914.2017.1303156. DOI

Kalita K., Mallick P.K., Bhoi A., Ghadai K. Optimizing Drilling Induced Delamination in GFRP Composites using Genetic Algorithm & Particle Swarm Optimisation. Adv. Compos. Lett. 2018;27:096369351802700101. doi: 10.1177/096369351802700101. DOI

Ragavendran U., Ghadai R.K., Bhoi A.K., Ramachandran M., Kalita K. Sensitivity analysis and optimization of EDM process parameters. Trans. Can. Soc. Mech. Eng. 2019;43:13–25. doi: 10.1139/tcsme-2018-0021. DOI

Shivakoti I., Pradhan B.B., Diyaley S., Ghadai R.K., Kalita K. Fuzzy TOPSIS-Based Selection of Laser Beam Micro-marking Process Parameters. Arab. J. Sci. Eng. 2017;42:4825–4831. doi: 10.1007/s13369-017-2673-1. DOI

Diyaley S., Shilal P., Shivakoti I., Ghadai R.K., Kalita K. PSI and TOPSIS Based Selection of Process Parameters in WEDM. Period. Polytech. Mech. Eng. 2017;61:255. doi: 10.3311/PPme.10431. DOI

Shinde D., Öktem H., Kalita K., Chakraborty S., Gao X.-Z. Optimization of Process Parameters for Friction Materials Using Multi-Criteria Decision Making: A Comparative Analysis. Processes. 2021;9:1570. doi: 10.3390/pr9091570. DOI

Juliyana S.J., Prakash J.U. Optimization of burr height in drilling of aluminium matrix composites (LM5/ZrO2) using Taguchi technique. Adv. Mater. Process. Technol. 2020:1–10. doi: 10.1080/2374068x.2020.1814984. DOI

Reddy S. Multi response Characteristics of Machining Parameters During Drilling of Alluminium 6061 alloy by Desirability Function Analysis using Taguchi Technique. Int. J. Appl. Sci. Eng. 2013;1:93–102.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...