Optimization of Process Variables in the Drilling of LM6/B4C Composites through Grey Relational Analysis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
35888330
PubMed Central
PMC9320392
DOI
10.3390/ma15144860
PII: ma15144860
Knihovny.cz E-resources
- Keywords
- ANOVA, composites, drilling, optimization, parameters,
- Publication type
- Journal Article MeSH
The objective of this investigational analysis was to study the influence of process variables on the response during the drilling of LM6/B4C composite materials. Stir casting was employed to produce the LM6/B4C composites. A Vertical Machining Center (VMC) with a dynamometer was used to drill the holes and to record the thrust force. An L27 orthogonal array was used to carry out the experimental work. A grey relational analysis (GRA) was employed to perform optimization in order to attain the lowest Thrust Force (TF), Surface Roughness (SR) and Burr Height (BH). For minimal responses, the optimum levels of the process variables viz. the feed rate (F), spindle speed (S), drill material (D) and reinforcing percentage (R) were determined. The process variables in the drilling of the LM6/B4C composites were indeed optimized, according to confirmational investigations. The predicted Grey Relational Grade was 0.846, whereas the experimental GRG was 0.865, with a 2.2% error-indicating that the optimization process was valid.
See more in PubMed
Hassan A.M., Alrashdan A., Hayajneh M.T., Mayyas A.T. Prediction of density, porosity and hardness in aluminum–copper-based composite materials using artificial neural network. J. Mater. Process. Technol. 2009;209:894–899. doi: 10.1016/j.jmatprotec.2008.02.066. DOI
Hassan A.M., Mayyas A.T., Alrashdan A., Hayajneh M.T. Wear behavior of Al–Cu and Al–Cu/SiC components produced by powder metallurgy. J. Mater. Sci. 2008;43:5368–5375. doi: 10.1007/s10853-008-2760-5. DOI
Hassan A.M., Hayajneh M., Al-Omari M.A.-H. The Effect of the Increase in Graphite Volumetric Percentage on the Strength and Hardness of Al-4 Weight Percent Mg-Graphite Composites. J. Mater. Eng. Perform. 2002;11:250–255. doi: 10.1361/105994902770344024. DOI
Hayajneh M., Hassan A.M., Alrashdan A., Mayyas A.T. Prediction of tribological behavior of aluminum–copper based composite using artificial neural network. J. Alloy. Compd. 2009;470:584–588. doi: 10.1016/j.jallcom.2008.03.035. DOI
Hayajneh M.T., Hassan A.M., Mayyas A.T. Artificial neural network modeling of the drilling process of self-lubricated aluminum/alumina/graphite hybrid composites synthesized by powder metallurgy technique. J. Alloy. Compd. 2009;478:559–565. doi: 10.1016/j.jallcom.2008.11.155. DOI
Zhong Z.-W. Processes for environmentally friendly and/or cost-effective manufacturing. Mater. Manuf. Process. 2021;36:987–1009. doi: 10.1080/10426914.2021.1885709. DOI
Alem S.A.A., Latifi R., Angizi S., Hassanaghaei F., Aghaahmadi M., Ghasali E., Rajabi M. Microwave sintering of ceramic reinforced metal matrix composites and their properties: A review. Mater. Manuf. Process. 2020;35:303–327. doi: 10.1080/10426914.2020.1718698. DOI
Davim J., António C.C. Optimal drilling of particulate metal matrix composites based on experimental and numerical procedures. Int. J. Mach. Tools Manuf. 2001;41:21–31. doi: 10.1016/S0890-6955(00)00071-7. DOI
Karabulut Ş., Gökmen U., Çinici H. Study on the mechanical and drilling properties of AA7039 composites reinforced with Al2O3/B4C/SiC particles. Compos. Part B Eng. 2016;93:43–55. doi: 10.1016/j.compositesb.2016.02.054. DOI
Davim J.P. Machining Composites Materials. John Wiley & Sons; Hoboken, NJ, USA: 2013.
Davim J.P. Machining of Hard Materials. Springer Science & Business Media; Berlin, Germany: 2011.
Kamble A., Kulkarni S.G. AIP Conference Proceedings. Volume 2105. AIP Publishing LLC; Melville, NY, USA: 2019. Microstructural examination of bagasse ash reinforced waste aluminium alloy matrix composite; p. 020011. DOI
Prasad S.V., Asthana R. Aluminium metal-matrix composites for automotive applications: Tribological considerations. Tribol. Lett. 2004;17:445–453. doi: 10.1023/B:TRIL.0000044492.91991.f3. DOI
Prasad V., Bhat B., Mahajan Y., Ramakrishnan P. Structure–property correlation in discontinuously reinforced aluminium matrix composites as a function of relative particle size ratio. Mater. Sci. Eng. A. 2002;337:179–186. doi: 10.1016/S0921-5093(02)00024-2. DOI
Etemadi R., Wang B., Pillai K.M., Niroumand B., Omrani E., Rohatgi P. Pressure infiltration processes to synthesize metal matrix composites—A review of metal matrix composites, the technology and process simulation. Mater. Manuf. Process. 2018;33:1261–1290. doi: 10.1080/10426914.2017.1328122. DOI
Miracle D. Metal matrix composites—From science to technological significance. Compos. Sci. Technol. 2005;65:2526–2540. doi: 10.1016/j.compscitech.2005.05.027. DOI
Basavarajappa S., Chandramohan G., Rao K.V.N., Radhakrishanan R., Krishnaraj V. Turning of particulate metal matrix composites—review and discussion. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006;220:1189–1204. doi: 10.1243/09544054JEM304. DOI
Kumar N.S., Shankar G.S., Basavarajappa S., Suresh R. Some studies on mechanical and machining characteristics of Al2219/n-B 4 C/MoS 2 nano-hybrid metal matrix composites. Measurement. 2017;107:1–11. doi: 10.1016/j.measurement.2017.05.003. DOI
Ficici F. Evaluation of surface roughness in drilling particle-reinforced composites. Adv. Compos. Lett. 2020;29:2633366X20937711. doi: 10.1177/2633366X20937711. DOI
Ravindranath V., Yerriswamy M., Vivek S., Shankar G.S., Kumar N.S. Drilling of Al2219/B 4 C/Gr metal matrix hybrid composites. Mater. Today Proc. 2017;4:9898–9901. doi: 10.1016/j.matpr.2017.06.290. DOI
Rajmohan T., Palanikumar K., Kathirvel M. Optimization of machining parameters in drilling hybrid aluminium metal matrix composites. Trans. Nonferrous Met. Soc. China. 2012;22:1286–1297. doi: 10.1016/S1003-6326(11)61317-4. DOI
Taşkesen A., Kütükde K. Experimental investigation and multi-objective analysis on drilling of boron carbide reinforced metal matrix composites using grey relational analysis. Measurement. 2014;47:321–330. doi: 10.1016/j.measurement.2013.08.040. DOI
Klocke F., Eisenblätter G. Dry Cutting. CIRP Ann. 1997;46:519–526. doi: 10.1016/S0007-8506(07)60877-4. DOI
Batzer S., Haan D., Rao P., Olson W., Sutherland J. Chip morphology and hole surface texture in the drilling of cast Aluminum alloys. J. Mater. Process. Technol. 1998;79:72–78. doi: 10.1016/S0924-0136(97)00324-5. DOI
Carrilero M., Bienvenido R., Sánchez J., Álvarez M., González A., Marcos M. A SEM and EDS insight into the BUL and BUE differences in the turning processes of AA2024 Al–Cu alloy. Int. J. Mach. Tools Manuf. 2002;42:215–220. doi: 10.1016/S0890-6955(01)00112-2. DOI
Dixit U.S., Sarma D.K., Davim J.P. Environmentally Friendly Machining. Springer Science & Business Media; Berlin, Germany: 2012.
Aamir M., Giasin K., Tolouei-Rad M., Vafadar A. A review: Drilling performance and hole quality of aluminium alloys for aerospace applications. J. Mater. Res. Technol. 2020;9:12484–12500. doi: 10.1016/j.jmrt.2020.09.003. DOI
Rubi C.S., Prakash J.U., Rajkumar C., Mohan A., Muthukumarasamy S. Optimization of process variables in drilling of LM6/fly ash composites using Grey-Taguchi method. Mater. Today Proc. 2022;62:5894–5898. doi: 10.1016/j.matpr.2022.04.627. DOI
Parikh V.K., Badheka V.J., Badgujar A.D., Ghetiya N.D. Fabrication and processing of aluminum alloy metal matrix composites. Mater. Manuf. Process. 2021;36:1604–1617. doi: 10.1080/10426914.2021.1914848. DOI
Ramulu M., Spaulding M. Drilling of Hybrid Titanium Composite Laminate (HTCL) with Electrical Discharge Machining. Materials. 2016;9:746. doi: 10.3390/ma9090746. PubMed DOI PMC
Kalita K., Pal S., Haldar S., Chakraborty S. A Hybrid TOPSIS-PR-GWO Approach for Multi-objective Process Parameter Optimization. Process Integr. Optim. Sustain. 2022:1–16. doi: 10.1007/s41660-022-00256-0. DOI
Rubi C.S., Prakash J.U. Drilling of Hybrid Aluminum Matrix Composites using Grey-Taguchi Method. INCAS Bull. 2020;12:167–174. doi: 10.13111/2066-8201.2020.12.1.16. DOI
Juliyana S.J., Prakash J.U. Drilling parameter optimization of metal matrix composites (LM5/ZrO2) using Taguchi Technique. Mater. Today Proc. 2020;33:3046–3050. doi: 10.1016/j.matpr.2020.03.211. DOI
Bansod A.V., Patil A.P., Kalita K., Deshmukh B.D., Khobragade N. Fuzzy multicriteria decision-making-based optimal Zn–Al alloy selection in corrosive environment. Int. J. Mater. Res. 2020;111:953–963. doi: 10.3139/146.111957. DOI
Prakash J.U., Rubi C.S., Rajkumar C., Juliyana S.J. Multi-objective drilling parameter optimization of hybrid metal matrix composites using grey relational analysis. Mater. Today Proc. 2020;39:1345–1350. doi: 10.1016/j.matpr.2020.04.570. DOI
Shivakoti I., Kalita K., Kibria G., Sharma A., Pradhan B.B., Ghadai R.K. Parametric analysis and multi response optimization of laser surface texturing of titanium super alloy. J. Braz. Soc. Mech. Sci. Eng. 2021;43:1–15. doi: 10.1007/s40430-021-03115-0. DOI
Hassan M.H., Abdullah J., Franz G. Multi-Objective Optimization in Single-Shot Drilling of CFRP/Al Stacks Using Customized Twist Drill. Materials. 2022;15:1981. doi: 10.3390/ma15051981. PubMed DOI PMC
Panchagnula K.K., Sharma J.P., Kalita K., Chakraborty S. CoCoSo method-based optimization of cryogenic drilling on multi-walled carbon nanotubes reinforced composites. Int. J. Interact. Des. Manuf. (IJIDeM) 2022:1–19. doi: 10.1007/s12008-022-00894-1. DOI
Palanikumar K., Muniaraj A. Experimental investigation and analysis of thrust force in drilling cast hybrid metal matrix (Al–15%SiC–4%graphite) composites. Measurement. 2014;53:240–250. doi: 10.1016/j.measurement.2014.03.027. DOI
Kumar G.V., Rao C.S.P., Selvaraj N. Mechanical and Tribological Behavior of Particulate Reinforced Aluminium Metal Matrix Composites–a Review. J. Miner. Mater. Charact. Eng. 2011;10:59–91.
Kalaiselvan K., Murugan N., Parameswaran S. Production and characterization of AA6061–B4C stir cast composite. Mater. Des. 2011;32:4004–4009. doi: 10.1016/j.matdes.2011.03.018. DOI
Prasad B. Investigation into sliding wear performance of zinc-based alloy reinforced with SiC particles in dry and lubricated conditions. Wear. 2007;262:262–273. doi: 10.1016/j.wear.2006.05.004. DOI
Kennedy A. The microstructure and mechanical properties of Al-Si-B4C metal matrix composites. J. Mater. Sci. 2002;37:317–323. doi: 10.1023/A:1013600328599. DOI
Kalita K., Shivakoti I., Ghadai R.K. Optimizing process parameters for laser beam micro-marking using genetic algorithm and particle swarm optimization. Mater. Manuf. Process. 2017;32:1101–1108. doi: 10.1080/10426914.2017.1303156. DOI
Kalita K., Mallick P.K., Bhoi A., Ghadai K. Optimizing Drilling Induced Delamination in GFRP Composites using Genetic Algorithm & Particle Swarm Optimisation. Adv. Compos. Lett. 2018;27:096369351802700101. doi: 10.1177/096369351802700101. DOI
Ragavendran U., Ghadai R.K., Bhoi A.K., Ramachandran M., Kalita K. Sensitivity analysis and optimization of EDM process parameters. Trans. Can. Soc. Mech. Eng. 2019;43:13–25. doi: 10.1139/tcsme-2018-0021. DOI
Shivakoti I., Pradhan B.B., Diyaley S., Ghadai R.K., Kalita K. Fuzzy TOPSIS-Based Selection of Laser Beam Micro-marking Process Parameters. Arab. J. Sci. Eng. 2017;42:4825–4831. doi: 10.1007/s13369-017-2673-1. DOI
Diyaley S., Shilal P., Shivakoti I., Ghadai R.K., Kalita K. PSI and TOPSIS Based Selection of Process Parameters in WEDM. Period. Polytech. Mech. Eng. 2017;61:255. doi: 10.3311/PPme.10431. DOI
Shinde D., Öktem H., Kalita K., Chakraborty S., Gao X.-Z. Optimization of Process Parameters for Friction Materials Using Multi-Criteria Decision Making: A Comparative Analysis. Processes. 2021;9:1570. doi: 10.3390/pr9091570. DOI
Juliyana S.J., Prakash J.U. Optimization of burr height in drilling of aluminium matrix composites (LM5/ZrO2) using Taguchi technique. Adv. Mater. Process. Technol. 2020:1–10. doi: 10.1080/2374068x.2020.1814984. DOI
Reddy S. Multi response Characteristics of Machining Parameters During Drilling of Alluminium 6061 alloy by Desirability Function Analysis using Taguchi Technique. Int. J. Appl. Sci. Eng. 2013;1:93–102.