Comparison of various approaches to detect algal culture contamination: a case study of Chlorella sp. contamination in a Phaeodactylum tricornutum culture

. 2021 Jun ; 105 (12) : 5189-5200. [epub] 20210619

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34146137

Grantová podpora
TN01000048 Technology Agency of the Czech Republic

Odkazy

PubMed 34146137
DOI 10.1007/s00253-021-11396-7
PII: 10.1007/s00253-021-11396-7
Knihovny.cz E-zdroje

Microalgal contamination in algal culture is a serious problem hampering the cultivation process, which can result in considerable economic and time losses. With the field of microalgal biotechnology on the rise, development of new tools for monitoring the cultures is of high importance. Here we present a case study of the detection of fast-growing green algae Chlorella vulgaris (as contaminant) in a diatom Phaeodactylum tricornutum culture using various approaches. We prepared mixed cultures of C. vulgaris and P. tricornutum in different cell-to-cell ratios in the range from 1:103 to 1:107. We compared the sensitivity among microscopy, cultivation-based technique, PCR, and qPCR. The detection of C. vulgaris contamination using light microscopy failed in samples containing cell ratios <1:105. Our results confirmed PCR/qPCR to provide the most reliable and sensitive results, with detection sensitivity close to 75 cells/mL. The method was similarly sensitive in a pure C. vulgaris culture as well as in a mixed culture containing 107-times more P. tricornutum cells. A next-generation sequencing analysis revealed a positive discrimination of C. vulgaris during DNA extraction. The method of cultivation media exchange from sea water to fresh water, preferred by the Chlorella contaminant, demonstrated a presence of the contaminant with a sensitivity comparable to PCR approaches, albeit with a much longer detection time. The results suggest that a qPCR/PCR-based approach is the best choice for an early warning in the commercial culturing of microalgae. This method can be conveniently complemented with the substitution-cultivation method to test the proliferating potential of the contaminant. KEY POINTS: • PCR-based protocol developed for detection of Chlorella cells. • Synergy of various approaches shows deeper insight into a presence of contaminants. • Positive/negative discrimination occurs during DNA extraction in mixed cultures. • Newly developed assays ready to use as in diagnostics of contamination.

Zobrazit více v PubMed

Allen MM, Stanier RY (1968) Growth and division of some unicellular blue-green algae. J Gen Microbiol 51:199–202. https://doi.org/10.1099/00221287-51-2-199 PubMed DOI

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021 PubMed DOI PMC

Barkia I, Saari N, Manning SR (2019) Microalgae for high-value products towards human health and nutrition. Mar Drugs 17:1–29. https://doi.org/10.3390/md17050304 DOI

Bishop W, Zubeck MH (2012) Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci 02. https://doi.org/10.4172/2155-9600.1000147

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170 PubMed DOI PMC

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797 DOI

Carney LT, Lane TW (2014) Parasites in algae mass culture. Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00278

Church J, Hwang JH, Kim KT, McLean R, Oh YK, Nam B, Joo JC, Lee WH (2017) Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresour Technol 243:147–153. https://doi.org/10.1016/j.biortech.2017.06.081 PubMed DOI

Costa JAV, de Morais MG (2013) An open pond system for microalgal cultivation. Biofuels from Algae:1–22. https://doi.org/10.1016/B978-0-444-59558-4.00001-2

Dawidziuk A, Popiel D, Luboinska M, Grzebyk M, Wisniewski M, Koczyk G (2017) Assessing contamination of microalgal astaxanthin producer Haematococcus cultures with high-resolution melting curve analysis. J Appl Genet 58:277–285. https://doi.org/10.1007/s13353-016-0378-x PubMed DOI

Day JG, Gong Y, Hu Q (2017) Microzooplanktonic grazers–A potentially devastating threat to the commercial success of microalgal mass culture. Algal Res 1:356–365. https://doi.org/10.1016/j.algal.2017.08.024

Day JG, Thomas NJ, Achilles-Day UEM, Leakey RJG (2012) Early detection of protozoan grazers in algal biofuel cultures. Bioresour Technol 114:715–719. https://doi.org/10.1016/j.biortech.2012.03.015 PubMed DOI

Di Caprio F (2020) Methods to quantify biological contaminants in microalgae cultures. Algal Res 49:101943. https://doi.org/10.1016/j.algal.2020.101943 DOI

Grivalský T, Ranglová K, da Câmara Manoel JA, Lakatos GE, Lhotský R, Masojídek J (2019) Development of thin-layer cascades for microalgae cultivation: milestones (review). Folia Microbiol (Praha) 64:603–614. https://doi.org/10.1007/s12223-019-00739-7 DOI

Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086 PubMed DOI PMC

Havlik I, Reardon KF, Ünal M, Lindner P, Prediger A, Babitzky A, Beutel S, Scheper T (2013) Monitoring of microalgal cultivations with on-line, flow-through microscopy. Algal Res 2:253–257. https://doi.org/10.1016/j.algal.2013.04.001 DOI

Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:1–21. https://doi.org/10.1186/s12934-018-0879-x DOI

Kralik P, Ricchi M (2017) A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol 8:1–9. https://doi.org/10.3389/fmicb.2017.00108 DOI

Letcher PM, Lopez S, Schmieder R, Lee PA, Behnke C, Powell MJ, McBride RC (2013) Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the Cryptomycota isolated from an outdoor algal pond used for the production of biofuel. PLoS One 8:e56232. https://doi.org/10.1371/journal.pone.0056232 PubMed DOI PMC

Metfies K, Berzano M, Mayer C, Roosken P, Gualerzi C, Medlin L, Muyzer G (2007) An optimized protocol for the identification of diatoms, flagellated algae and pathogenic protozoa with phylochips. Mol Ecol Notes 7:925–936. https://doi.org/10.1111/j.1471-8286.2007.01799.x DOI

Oh SH, Jang CS (2020) Development and validation of a real-time PCR based assay to detect adulteration with corn in commercial turmeric powder products. Foods:9. https://doi.org/10.3390/foods9070882

Přibyl P, Cepák V, Kaštánek P, Zachleder V (2015) Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Res 11:22–27. https://doi.org/10.1016/j.algal.2015.05.020 DOI

Rai MP, Gautom T, Sharma N (2015) Effect of salinity, pH, light intensity on growth and lipid production of microalgae for bioenergy application. Online J Biol Sci 15:260–267. https://doi.org/10.3844/ojbsci.2015.260.267 DOI

Rippka R, Deruelles J, Waterbury JB (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61. https://doi.org/10.1099/00221287-111-1-1 DOI

Starr RC, Zeikus JA (1993) UTEX—the culture collection of algae at the University of Texas at Austin. J Phycol 29:1–106 DOI

Staub R (1961) rnährungsphysiologisch-autökologische Untersuchungen an der planktischen Blaualge Oscillatoria rubescens DC. Schweiz Z Hydrol 23:82–198

Venancio HC, Cella H, Lopes RG, Derner RB (2020) Surface-to-volume ratio influence on the growth of Scenedesmus obliquus in a thin-layer cascade system. J Appl Phycol 32:821–829. https://doi.org/10.1007/s10811-020-02036-0 DOI

Wang H, Zhang W, Chen L, Wang J, Liu T (2013) The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour Technol 128:745–750. https://doi.org/10.1016/j.biortech.2012.10.158 PubMed DOI

Wang Y, Castillo-Keller M, Eustance E, Sommerfeld M (2017) Early detection and quantification of zooplankton grazers in algal cultures by FlowCAM. Algal Res 21:98–102. https://doi.org/10.1016/j.algal.2016.11.012 DOI

Wrage J, Kleyner O, Rohn S, Kuballa J (2020) Development of a DNA-based detection method for cocos nucifera using TaqMan™ real-time PCR. Foods 9:332.  https://doi.org/10.3390/foods9030332

Wu T, Li L, Jiang X, Yang Y, Song Y, Chen L, Xu X, Shen Y, Gu Y (2019) Sequencing and comparative analysis of three Chlorella genomes provide insights into strain-specific adaptation to wastewater. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-45511-6 DOI

Zhu Z, Jiang J, Yun F (2020) Overcoming the biological contamination in microalgae and cyanobacteria mass cultivations for photosynthetic biofuel production. Molecules 25

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...