Poly-β-hydroxybutyrate production by Synechocystis MT_a24 in a raceway pond using urban wastewater

. 2024 Dec ; 108 (1) : 44. [epub] 20240105

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38180554

Grantová podpora
ATCZ260 Interreg

Odkazy

PubMed 38180554
DOI 10.1007/s00253-023-12924-3
PII: 10.1007/s00253-023-12924-3
Knihovny.cz E-zdroje

Poly-β-hydroxybutyrate (PHB) is a potential source of biodegradable plastics that are environmentally friendly due to their complete degradation to water and carbon dioxide. This study aimed to investigate PHB production in the cyanobacterium Synechocystis sp. PCC6714 MT_a24 in an outdoor bioreactor using urban wastewater as a sole nutrient source. The culture was grown in a thin-layer raceway pond with a working volume of 100 L, reaching a biomass density of up to 3.5 g L-1 of cell dry weight (CDW). The maximum PHB content was found under nutrient-limiting conditions in the late stationary phase, reaching 23.7 ± 2.2% PHB per CDW. These data are one of the highest reported for photosynthetic production of PHB by cyanobacteria, moreover using urban wastewater in pilot-scale cultivation which multiplies the potential of sustainable cultivation approaches. Contamination by grazers (Poterioochromonas malhamensis) was managed by culturing Synechocystis in a highly alkaline environment (pH about 10.5) which did not significantly affect the culture growth. Furthermore, the strain MT_a24 showed significant wastewater nutrient remediation removing about 72% of nitrogen and 67% of phosphorus. These trials demonstrate that the photosynthetic production of PHB by Synechocystis sp. PCC6714 MT_a24 in the outdoor thin-layer bioreactor using urban wastewater and ambient carbon dioxide. It shows a promising approach for the cost-effective and sustainable production of biodegradable carbon-negative plastics. KEY POINTS: • High PHB production by cyanobacteria in outdoor raceway pond • Urban wastewater used as a sole source of nutrients for phototrophic growth • Potential for cost-effective and sustainable production of biodegradable plastics.

Zobrazit více v PubMed

Allen MM, Stanier RY (1968) Simple conditions for growth of unicellular blue-green algae. J Gen Microbiol 51:199–202. https://doi.org/10.1099/00221287-51-2-199 PubMed DOI

Bhati R, Mallick N (2015) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum Agardh: process optimization and polymer characterization. Algal Res 7:78–85. https://doi.org/10.1016/j.algal.2014.12.003 DOI

Bhati R, Mallick N (2016) Carbon dioxide and poultry waste utilization for production of polyhydroxyalkanoate biopolymers by Nostoc muscorum Agardh: a sustainable approach. J Appl Phycol 28:161–168. https://doi.org/10.1007/s10811-015-0573-x DOI

Carneiro M, Ranglová K, Lakatos GE, Câmara Manoel JA, Grivalský T, Kozhan DM, Toribio A, Moreno J, Otero A, Varela J, Malcata FX, Suárez Estrella F, Acién-Fernándéz FG, Molnár Z, Ördög V, Masojídek J (2021) Growth and bioactivity of two chlorophyte (Chlorella and Scenedesmus) strains co-cultured outdoors in two different thin-layer units using municipal wastewater as a nutrient source. Algal Res 56:2–9. https://doi.org/10.1016/j.algal.2021.102299 DOI

Carney LT, Lane TW (2014) Parasites in algae mass culture. Front Microbiol 5:278. https://doi.org/10.3389/fmicb.2014.00278 PubMed DOI PMC

Di Caprio F (2020) Methods to quantify biological contaminants in microalgae cultures. Algal Res 49:101943. https://doi.org/10.1016/j.algal.2020.101943 DOI

Drosg B, Fritz I, Gattermayr F, Silvestrini L (2015) Photo-autotrophic production of poly(hydroxyalkanoates) in cyanobacteria. Chem Biochem Eng Q 29:145–156. https://doi.org/10.15255/CABEQ.2014.2254

Forchhammer K, Schwarz R (2019) Nitrogen chlorosis in unicellular cyanobacteria – a developmental program for surviving nitrogen deprivation. Environ Microbiol 21:1173–1184. https://doi.org/10.1111/1462-2920.14447 PubMed DOI

Getachew A, Woldesenbet F (2016) Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res Notes 9:1–9. https://doi.org/10.1186/s13104-016-2321-y DOI

Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made - Supplementary Information. Sci Adv 3:19–24. https://doi.org/10.1126/sciadv.1700782 DOI

Grivalský T, Ranglová K, da Câmara JAM, Lakatos GE, Lhotský R, Masojídek J (2019) Development of thin-layer cascades for microalgae cultivation: milestones (review). Folia Microbiol 64:603–614. https://doi.org/10.1007/s12223-019-00739-7 DOI

Grivalský T, Ranglová K, Lakatos GE, Manoel JAC, Černá T, Barceló-Villalobos M, Estrella FS, Ördög V, Masojídek J (2022) Bioactivity assessment, micropollutant and nutrient removal ability of Tetradesmus obliquus cultivated outdoors in centrate from urban wastewater. J Appl Phycol 34:2955–2970. https://doi.org/10.1007/s10811-022-02828-6 DOI

Grivalský T, Střížek A, Přibyl P, Lukavský J, Čegan R, Hobza R, Hrouzek P (2021) Comparison of various approaches to detect algal culture contamination: a case study of Chlorella sp. contamination in a Phaeodactylum tricornutum culture. Appl Microbiol Biotechnol 105:5189–5200. https://doi.org/10.1007/s00253-021-11396-7 PubMed DOI

Hu B, Min M, Zhou W, Du Z, Mohr M, Chen P, Zhu J, Cheng Y, Liu Y, Ruan R (2012) Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Bioresour Technol 126:71–79. https://doi.org/10.1016/j.biortech.2012.09.031 PubMed DOI

Kaewbai-ngam A, Incharoensakdi A, Monshupanee T (2016) Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: An efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrix scytonemicola TISTR 8095. Bioresour Technol 212:342–347. https://doi.org/10.1016/j.biortech.2016.04.035 PubMed DOI

Kamravamanesh D, Kiesenhofer D, Fluch S, Lackner M, Herwig C (2019) Scale-up challenges and requirement of technology-transfer for cyanobacterial poly (3-hydroxybutyrate) production in industrial scale. Int J Biobased Plast 1:60–71. https://doi.org/10.1080/24759651.2019.1688604 DOI

Kamravamanesh D, Kovacs T, Pflügl S, Druzhinina I, Kroll P, Lackner M, Herwig C (2018a) Increased poly-Β-hydroxybutyrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: mutant generation and characterization. Bioresour Technol 266:34–44. https://doi.org/10.1016/j.biortech.2018.06.057 PubMed DOI

Kamravamanesh D, Lackner M, Herwig C (2018b) Bioprocess engineering aspects of sustainable polyhydroxyalkanoate production in cyanobacteria. Bioengineering 5:1–18. https://doi.org/10.3390/BIOENGINEERING5040111 DOI

Karr DB, Waters JK, Emerich DW (1983) Analysis of poly-, 3-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detectiont. Appl Environ Microbiol 46:1339–1344 PubMed DOI PMC

Kavitha G, Kurinjimalar C, Sivakumar K, Aravind R, Shree CG, Arthi K, Palani P, Kaviyarasan V, Rengasamy R (2016) Mass cultivation of UV-B adapted Arthrospira platensis RRGK under open raceway pond for the production of Poly-β-hydroxy butyrate. Int J Biol Macromol 93:1304–1316. https://doi.org/10.1016/j.ijbiomac.2016.09.105 PubMed DOI

Klotz A, Georg J, Bučinská L, Watanabe S, Reimann V, Januszewski W, Sobotka R, Jendrossek D, Hess WR, Forchhammer K (2016) Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr Biol 26:2862–2872. https://doi.org/10.1016/j.cub.2016.08.054 PubMed DOI

Koch M, Berendzen KW, Forchhammer K (2020a) On the role and production of polyhydroxybutyrate (PHB) in the cyanobacterium Synechocystis sp. PCC 6803. Life 10:47

Koch M, Bruckmoser J, Scholl J, Hauf W, Rieger B, Forchhammer K (2020b) Maximizing PHB content in Synechocystis sp. PCC 2 6803: development of a new photosynthetic 3 overproduction strain. bioRxiv 2020:10.22.350660

Koch M, Doello S, Gutekunst K, Forchhammer K (2019) PHB is produced from glycogen turn-over during nitrogen starvation in Synechocystis sp. PCC 6803. Int J Mol Sci 20:1942. https://doi.org/10.3390/ijms20081942

Lakatos GE, Ranglová K, Câmara Manoel J, Grivalský T, Masojídek J (2021) Photosynthetic monitoring techniques indicate maximum glycogen accumulation in nitrogen-limited Synechocystis sp. PCC 6803 culture. Algal Res 55: 102271. https://doi.org/10.1016/j.algal.2021.102271

Lapointe A, Spiteller D, Kroth G (2022) High throughput method for extracting polyphosphates from diatoms. Endocytobiosis Cell Res 31:29–38

Lee S-A, Kim M, Kim H-S, Ahn C-Y (2022) Extra benefit of microalgae in raw piggery wastewater treatment: pathogen reduction. Microbiome 10:1–14. https://doi.org/10.1186/s40168-022-01339-3 DOI

Ma M, Gong Y, Hu Q (2018) Identification and feeding characteristics of the mixotrophic flagellate Poterioochromonas malhamensis, a microalgal predator isolated from outdoor massive Chlorella culture. Algal Res 29:142–153. https://doi.org/10.1016/j.algal.2017.11.024 DOI

Masamoto K, Furukawa KI (1997) Accumulation of zeaxanthin in cells of the cyanobacterium, Synechococcus sp. Strain PCC 7942 grown under high irradiance. J Plant Physiol 151:257–261. https://doi.org/10.1016/S0176-1617(97)80250-7 DOI

Masojídek J, Ranglová K, Lakatos GE, Benavides AMS, Torzillo G (2021) Variables governing photosynthesis and growth in microalgae mass cultures. Processes 9:820. https://doi.org/10.3390/pr9050820 DOI

McAdam B, Brennan FM, Mcdonald P, Mojicevic M (2020) Production of polyhydroxybutyrate (PHB) and factors impacting its chemical andmechanical characteristics. Polymers 12:2908 PubMed DOI PMC

Meixner K, Fritz I, Daffert C, Markl K, Fuchs W, Drosg B (2016) Processing recommendations for using low-solids digestate as nutrient solution for poly-ß-hydroxybutyrate production with Synechocystis salina. J Biotechnol 240:61–67. https://doi.org/10.1016/j.jbiotec.2016.10.023 PubMed DOI

Mittermair S, Richter J, Doppler P, Trenzinger K, Nicoletti C, Forsich C, Spadiut O, Herwig C, Lackner M (2021) Impact of exoD gene knockout on the polyhydroxybutyrate overaccumulating mutant Mt_a24. Int J Biobased Plast 3:1–18. https://doi.org/10.1080/24759651.2020.1863020 DOI

Mohammed-Nour A, Al-Sewailem M, El-Naggar AH (2019) The influence of alkalization and temperature on ammonia recovery from cow manure and the chemical properties of the effluents. Sustain 11:2441. https://doi.org/10.3390/su11082441 DOI

Nishioka M, Nakai K, Miyake M, Asada Y, Taya M (2001) Production of poly-β-hydroxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate-limited conditions. Biotechnol Lett 23:1095–1099. https://doi.org/10.1023/A:1010551614648 DOI

Pagels F, Vasconcelos V, Guedes AC (2021) Carotenoids from cyanobacteria: biotechnological potential and optimization strategies. Biomolecules 11:1–21. https://doi.org/10.3390/biom11050735 DOI

Rai PK, Lee J, Brown RJC, Kim KH (2021) Micro- and nano-plastic pollution: Behavior, microbial ecology, and remediation technologies. J Clean Prod 291:125240. https://doi.org/10.1016/j.jclepro.2020.125240 DOI

Ranglová K, Lakatos GE, Câmara Manoel JA, Grivalský T, Suárez Estrella F, Acién Fernández FG, Molnár Z, Ördög V, Masojídek J (2021) Growth, biostimulant and biopesticide activity of the MACC-1 Chlorella strain cultivated outdoors in inorganic medium and wastewater. Algal Res 53:102136. https://doi.org/10.1016/j.algal.2020.102136 DOI

Ranglová K, Lakatos GE, Manoel JAC, Grivalský T, Masojídek J (2019) Rapid screening test to estimate temperature optima for microalgae growth using photosynthesis activity measurements. Folia Microbiol (Praha) 64:615–625. https://doi.org/10.1007/s12223-019-00738-8 PubMed DOI

Rasoul-Amini S, Ghasemi Y, Morowvat MH, Mohagheghzadeh A (2009) PCR amplification of 18S rRNA, single cell protein production and fatty acid evaluation of some naturally isolated microalgae. Food Chem 116:129–136. https://doi.org/10.1016/j.foodchem.2009.02.025 DOI

Rueda E, García-Galán MJ, Díez-Montero R, Vila J, Grifoll M, García J (2020) Polyhydroxybutyrate and glycogen production in photobioreactors inoculated with wastewater borne cyanobacteria monocultures. Bioresour Technol 295:122233. https://doi.org/10.1016/j.biortech.2019.122233 PubMed DOI

Schagerl M, Müller B (2006) Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria. J Plant Physiol 163:709–716. https://doi.org/10.1016/j.jplph.2005.09.015 PubMed DOI

Summerfield TC, Sherman LA (2008) Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. Strain PCC 6803 to a pH 10 environment. Appl Environ Microbiol 74:5276–5284. https://doi.org/10.1128/AEM.00883-08 PubMed DOI PMC

Takaichi S, Mochimaru M (2007) Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cell Mol Life Sci 64:2607–2619. https://doi.org/10.1007/s00018-007-7190-z PubMed DOI

Touloupakis E, Cicchi B, Benavides AMS, Torzillo G (2016) Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp.). Appl Microbiol Biotechnol 100:1333–1341. https://doi.org/10.1007/s00253-015-7024-0 PubMed DOI

Trentin G, Bertucco A, Sforza E (2019) Mixotrophy in Synechocystis sp. for the treatment of wastewater with high nutrient content: effect of CO2 and light. Bioprocess Biosyst Eng 42:1661–1669. https://doi.org/10.1007/s00449-019-02162-1 PubMed DOI

Troschl C, Meixner K, Drosg B (2017) Cyanobacterial PHA production—review of recent advances and a summary of three years’ working experience running a pilot plant. Bioengineering 4:26. https://doi.org/10.3390/bioengineering4020026 PubMed DOI PMC

Troschl C, Meixner K, Fritz I, Leitner K, Romero AP, Kovalcik A, Sedlacek P, Drosg B (2018) Pilot-scale production of poly-β-hydroxybutyrate with the cyanobacterium Synechocytis sp. CCALA192 in a non-sterile tubular photobioreactor. Algal Res 34:116–125. https://doi.org/10.1016/j.algal.2018.07.011 DOI

Valev D, Kurkela J, Tyystjärvi E, Tyystjärvi T (2020) Testing the potential of regulatory sigma factor mutants for wastewater purification or bioreactor run in high light. Curr Microbiol 77:1590–1599. https://doi.org/10.1007/s00284-020-01973-w PubMed DOI PMC

Verlinden RA, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449 PubMed DOI

Wang Q, Hall CL, Al-Adami MZ, He Q (2010) IsiA is required for the formation of photosystem I supercomplexes and for efficient state transition in Synechocystis PCC 6803. PLoS ONE 5:e10432. https://doi.org/10.1371/journal.pone.0010432 PubMed DOI PMC

Wellburn AR (1994) The Spectral Determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313. https://doi.org/10.1016/S0176-1617(11)81192-2 DOI

Yao L, Shi J, Miao X (2015) Mixed wastewater coupled with CO2 for microalgae culturing and nutrient removal. PLoS ONE 10:1–16. https://doi.org/10.1371/journal.pone.0139117 DOI

Yashavanth PR, Das M, Maiti SK (2021) Recent progress and challenges in cyanobacterial autotrophic production of polyhydroxybutyrate (PHB), a bioplastic. J Environ Chem Eng 9:105379. https://doi.org/10.1016/j.jece.2021.105379 DOI

Zerrouki D, Henni A (2019) Outdoor microalgae cultivation for wastewater treatment. Appl Microalgae Wastewater Treat 2019:81–99. https://doi.org/10.1007/978-3-030-13913-1_5 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...