BACKGROUND: Evobrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, has shown preliminary efficacy in people with relapsing multiple sclerosis in a phase 2 trial. Here, we aimed to compare the safety and efficacy of evobrutinib with the active comparator teriflunomide in people with relapsing multiple sclerosis. METHODS: EvolutionRMS1 and evolutionRMS2 were two multicentre, randomised, double-blind, double-dummy, active-controlled, phase 3 trials conducted at 701 multiple sclerosis centres and neurology clinics in 52 countries. Adults aged 18-55 years with relapsing multiple sclerosis (Expanded Disability Status Scale [EDSS] score of 0·0-5·5) were included. Participants were randomly assigned (1:1) using a central interactive web response system to receive either evobrutinib (45 mg twice per day with placebo once per day) or teriflunomide (14 mg once per day with placebo twice per day), all taken orally and in an unfasted state, with randomisation stratified by geographical region and baseline EDSS. All study staff and participants were masked to the study interventions. The primary endpoint for each study was annualised relapse rate based on adjudicated qualified relapses up to 156 weeks, assessed in the full analysis set (defined as all randomly assigned participants) with a negative binomial model. These studies are registered with ClinicalTrials.gov (NCT04338022 for evolutionRMS1 and NCT04338061 for evolutionRMS2, both are terminated). FINDINGS: The primary analysis was done using data for 2290 randomly assigned participants collected from June 12, 2020, to Oct 2, 2023. 1124 participants were included in the full analysis set in evolutionRMS1 (560 in the evobrutinib group and 564 in the teriflunomide group) and 1166 in evolutionRMS2 (583 in each group). 751 (66·8%) participants were female and 373 (33·1%) were male in evolutionRMS1, whereas 783 (67·2%) were female and 383 (32·8%) were male in evolutionRMS2. Annualised relapse rate was 0·15 (95% CI 0·12-0·18 with evobrutinib vs 0·14 [0·11-0·18] with teriflunomide (adjusted RR 1·02 [0·75-1·39]; p=0·55) in evolutionRMS1 and 0·11 (0·09-0·13 vs 0·11 [0·09-0·13]; adjusted RR 1·00 [0·74-1·35]; p=0·51) in evolutionRMS2. The pooled proportion of participants with any treatment-emergent adverse event (TEAE) was similar between treatment groups (976 [85·6%] of 1140 with evobrutinib vs 999 [87·2%] of 1146 with teriflunomide). The most frequently reported TEAEs were COVID-19 (223 [19·6%] with evobrutinib vs 223 [19·5%] with teriflunomide), alanine aminotransferase increased (173 [15·2%] vs 204 [17·8%]), aspartate aminotransferase increased (110 [9·6%] vs 131 [11·4%]), and headache (175 [15·4%] vs 176 [15·4%]). Serious TEAE incidence rates were higher with evobrutinib than teriflunomide (86 [7·5%] vs 64 [5·6%]). Liver enzyme elevations at least 5 × upper limit of normal were more common with evobrutinib than with teriflunomide, particularly in the first 12 weeks (55 [5·0%] vs nine [<1%]). Three people who received evobrutinib and one who received teriflunomide met the biochemical definition of Hy's law; all cases resolved after discontinuation of treatment. There were two deaths (one in each group), neither related to study treatment. INTERPRETATION: The efficacy of evobrutinib was not superior to that of teriflunomide. Together, efficacy and liver-related safety findings do not support the use of evobrutinib in people with relapsing multiple sclerosis. FUNDING: Merck.
- MeSH
- Adult MeSH
- Double-Blind Method MeSH
- Hydroxybutyrates * MeSH
- Protein Kinase Inhibitors therapeutic use adverse effects MeSH
- Crotonates * therapeutic use MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Nitriles * therapeutic use MeSH
- Piperidines MeSH
- Agammaglobulinaemia Tyrosine Kinase antagonists & inhibitors MeSH
- Pyrimidines * therapeutic use MeSH
- Multiple Sclerosis, Relapsing-Remitting * drug therapy MeSH
- Toluidines * therapeutic use MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase III MeSH
- Multicenter Study MeSH
- Randomized Controlled Trial MeSH
AIMS: Patients with heart failure (HF) display metabolic alterations, including heightened ketogenesis, resulting in increased beta-hydroxybutyrate (β-OHB) formation. We aimed to investigate the determinants and prognostic impact of circulating β-OHB levels in patients with advanced HF and reduced ejection fraction (HFrEF). METHODS AND RESULTS: A total of 867 patients with advanced HFrEF (age 57 ± 11 years, 83% male, 45% diabetic, 60% New York Heart Association class III), underwent clinical and echocardiographic examination, circulating metabolite assessment, and right heart catheterization (n = 383). The median β-OHB level was 64 (interquartile range [IQR] 33-161) μmol/L (normal 0-74 μmol/L). β-OHB levels correlated with increased markers of lipolysis (free fatty acids [FFA]), higher natriuretic peptides, worse pulmonary haemodynamics, and lower humoral regulators of ketogenesis (insulin/glucagon ratio). During a median follow-up of 1126 (IQR 410-1781) days, there were 512 composite events, including 324 deaths, 81 left ventricular assist device implantations and 107 urgent cardiac transplantations. In univariable Cox regression, increased β-OHB levels (T3 vs. T1: hazard ratio [HR] 1.39, 95% confidence interval [CI] 1.13-1.72, p = 0.002) and elevated FFA levels (T3 vs. T1: HR 1.39, 95% CI 1.09-1.79, p = 0.008) were both predictors of a worse prognosis. In multivariable Cox analysis evaluating the simultaneous associations of FFA and β-OHB levels with outcomes, only FFA levels remained significantly associated with adverse outcomes. CONCLUSIONS: In patients with advanced HFrEF, increased plasma β-OHB correlate with FFA levels, worse right ventricular function, greater neurohormonal activation and other markers of HF severity. The association between plasma β-OHB and adverse outcomes is eliminated after accounting for FFA levels, suggesting that increased β-OHB is a consequence reflecting heightened lipolytic state, rather than a cause of worsening HF.
- MeSH
- Biomarkers * blood MeSH
- Echocardiography MeSH
- 3-Hydroxybutyric Acid * blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Prognosis MeSH
- Aged MeSH
- Cardiac Catheterization MeSH
- Heart Failure * blood physiopathology MeSH
- Stroke Volume * physiology MeSH
- Heart Transplantation MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
BACKGROUND & AIM: Dysfunction of skeletal muscle satellite cells might impair muscle regeneration and prolong ICU-acquired weakness, a condition associated with disability and delayed death. This study aimed to elucidate the distinct metabolic effects of critical illness and β-OH-butyrate on satellite cells isolated from these patients. METHODS: Satellite cells were extracted from vastus lateralis muscle biopsies of patients with ICU-acquired weakness (n = 10) and control group of healthy volunteers or patients undergoing elective hip replacement surgery (n = 10). The cells were exposed to standard culture media supplemented with β-OH-butyrate to assess its influence on cell proliferation by ELISA, mitochondrial functions by extracellular flux analysis, electron transport chain complexes by high resolution respirometry, and ROS production by confocal microscopy. RESULTS: Critical illness led to a decline in maximal respiratory capacity, ATP production and glycolytic capacity and increased ROS production in ICU patients' cells. Notably, the function of complex II was impaired due to critical illness but restored to normal levels upon exposure to β-OH-butyrate. While β-OH-butyrate significantly reduced ROS production in both control and ICU groups, it had no significant impact on global mitochondrial functions. CONCLUSION: Critical illness induces measurable bioenergetic dysfunction of skeletal muscle satellite cells. β-OH-butyrate displayed a potential in rectifying complex II dysfunction caused by critical illness and this warrants further exploration.
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Adult MeSH
- Energy Metabolism drug effects MeSH
- Critical Illness * MeSH
- Cells, Cultured MeSH
- 3-Hydroxybutyric Acid * pharmacology MeSH
- Middle Aged MeSH
- Humans MeSH
- Mitochondria drug effects metabolism MeSH
- Cell Proliferation drug effects MeSH
- Reactive Oxygen Species * metabolism MeSH
- Satellite Cells, Skeletal Muscle * drug effects metabolism MeSH
- Aged MeSH
- Muscle Weakness MeSH
- Mitochondria, Muscle drug effects metabolism MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Background: Multiple sclerosis (MS) is threefold more prevalent in women than men. However, sex-specific efficacy analysis for MS disease-modifying therapies is not typically performed. Methods:Post hoc analyses of data from female patients enrolled in the phase 3, double-blind OPTIMUM study of relapsing MS were carried out. Eligible adults were randomized to ponesimod 20 mg or teriflunomide 14 mg once daily for up to 108 weeks. The primary endpoint was annualized relapse rate (ARR); secondary endpoints included change in symptom domain of Fatigue Symptom and Impact Questionnaire-Relapsing Multiple Sclerosis (FSIQ-RMS) at week 108, number of combined unique active lesions (CUALs) per year on magnetic resonance imaging, and time to 12- and 24-week confirmed disability accumulation (CDA). Results: A total of 735 female patients (581 of childbearing potential) were randomized to ponesimod (n = 363, 49.4%) or teriflunomide (n = 372, 50.6%). Relative risk reduction in the ARR for ponesimod versus teriflunomide was 33.1% (mean, 0.192 vs. 0.286, respectively; p < 0.002). Mean difference in FSIQ-RMS for ponesimod versus teriflunomide was -4.34 (0.12 vs. 4.46; p = 0.002); rate ratio in CUALs per year, 0.601 (1.45 vs. 2.41; p < 0.0001), and hazard ratio for time to 12- and 24-week CDA risk estimates, 0.83 (10.7% vs. 12.9%; p = 0.38) and 0.91 (8.8% vs. 9.7%; p = 0.69), respectively. Incidence of treatment-emergent adverse events was similar between treatment groups (89.0% and 90.1%). Conclusions: Analyses demonstrate the efficacy and safety of ponesimod, versus active comparator, for women with relapsing MS, supporting data-informed decision-making for women with MS. Clinical Trial Registration Number: NCT02425644.
- MeSH
- Adult MeSH
- Double-Blind Method MeSH
- Hydroxybutyrates * MeSH
- Crotonates * therapeutic use adverse effects MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Nitriles * therapeutic use adverse effects MeSH
- Surveys and Questionnaires MeSH
- Multiple Sclerosis, Relapsing-Remitting * drug therapy MeSH
- Thiazoles adverse effects therapeutic use MeSH
- Toluidines * therapeutic use adverse effects MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase III MeSH
- Research Support, Non-U.S. Gov't MeSH
- Randomized Controlled Trial MeSH
- Comparative Study MeSH
BACKGROUND: Teriflunomide is administered orally to treat relapsing-remitting multiple sclerosis. In this prospective pilot study, the free and total serum concentrations of teriflunomide obtained during routine health care were measured and their relationship with disease activity was evaluated. METHODS: Eighty-nine patients were included in this study. Blood samples were collected from April 2021 to February 2022, and free and total teriflunomide serum concentrations were measured. Patient assessment involved monitoring of blood counts and potential adverse effects of teriflunomide. RESULTS: In the steady-state group, total teriflunomide concentrations ranged from 14.7 to 144.2 mg/L, while free concentrations from 31.1 to 389.7 μg/L. In the non-steady-state group, the total concentration ranged from 2.2 to 59.3 mg/L, with free concentrations ranging from 6.8 to 143.5 μg/L. In the steady-state group, a significant inverse correlation was found between absolute peripheral blood lymphocyte count and both total and free teriflunomide serum concentrations. CONCLUSION: Although all patients were treated with the same dose, up to a 10-fold difference in total and free teriflunomide serum concentrations, and up to a 5-fold difference in steady-state trough concentrations were observed. This vast interindividual variability can potentially lead to toxicity or, conversely, to suboptimal therapeutic concentrations of teriflunomide, with the risk of further worsening of multiple sclerosis compensation.
- MeSH
- Hydroxybutyrates * MeSH
- Crotonates * MeSH
- Humans MeSH
- Nitriles * MeSH
- Pilot Projects MeSH
- Prospective Studies MeSH
- Cross-Sectional Studies MeSH
- Multiple Sclerosis, Relapsing-Remitting * drug therapy MeSH
- Multiple Sclerosis * drug therapy MeSH
- Toluidines * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Poly-β-hydroxybutyrate (PHB) is a potential source of biodegradable plastics that are environmentally friendly due to their complete degradation to water and carbon dioxide. This study aimed to investigate PHB production in the cyanobacterium Synechocystis sp. PCC6714 MT_a24 in an outdoor bioreactor using urban wastewater as a sole nutrient source. The culture was grown in a thin-layer raceway pond with a working volume of 100 L, reaching a biomass density of up to 3.5 g L-1 of cell dry weight (CDW). The maximum PHB content was found under nutrient-limiting conditions in the late stationary phase, reaching 23.7 ± 2.2% PHB per CDW. These data are one of the highest reported for photosynthetic production of PHB by cyanobacteria, moreover using urban wastewater in pilot-scale cultivation which multiplies the potential of sustainable cultivation approaches. Contamination by grazers (Poterioochromonas malhamensis) was managed by culturing Synechocystis in a highly alkaline environment (pH about 10.5) which did not significantly affect the culture growth. Furthermore, the strain MT_a24 showed significant wastewater nutrient remediation removing about 72% of nitrogen and 67% of phosphorus. These trials demonstrate that the photosynthetic production of PHB by Synechocystis sp. PCC6714 MT_a24 in the outdoor thin-layer bioreactor using urban wastewater and ambient carbon dioxide. It shows a promising approach for the cost-effective and sustainable production of biodegradable carbon-negative plastics. KEY POINTS: • High PHB production by cyanobacteria in outdoor raceway pond • Urban wastewater used as a sole source of nutrients for phototrophic growth • Potential for cost-effective and sustainable production of biodegradable plastics.
- MeSH
- Biodegradable Plastics * MeSH
- Hydroxybutyrates MeSH
- Wastewater MeSH
- Carbon Dioxide MeSH
- Polyesters MeSH
- Ponds MeSH
- Synechocystis * MeSH
- Publication type
- Journal Article MeSH
Advanced solid phase extraction (SPE) fibrous sorbents including polyethylene, polypropylene poly (hydroxybutyrate), and polyamide 6 nanofibers, polycaprolactone microfibers/nanofibers, polycaprolactone microfibers/polyvinylidene difluoride nanofibers, and poly (hydroxybutyrate) microfibers/polypropylene microfibers composites, as well as commercial molecularly imprinted polymers and restricted access media sorbent were compared in terms of bisphenols extraction from milk and their clean-up efficiency. Three on-line SPE-HPLC methods were completely validated for the extraction and detection of bisphenols A, AF, C, A diglycidyl ether, and F diglycidyl ether in bovine milk. Polycaprolactone composite nanofibers compared favorably to restricted access media, enabled excellent clean-up of bisphenols from the proteinaceous matrix, and yielded recoveries 98.0-124.5% and 93.0-115.0%, respectively, with RSD less than 10%. Total analysis time including on-line SPE step lasted only 12 min, which represents a significant reduction in time compared with previously reported as well as official European Union and AOAC methods defined for the determination of bisphenols in various matrices.
- MeSH
- Adsorption MeSH
- Ethers MeSH
- Solid Phase Extraction methods MeSH
- Hydroxybutyrates MeSH
- Milk MeSH
- Molecularly Imprinted Polymers MeSH
- Molecular Imprinting * methods MeSH
- Nanofibers * chemistry MeSH
- Polypropylenes MeSH
- Chromatography, High Pressure Liquid methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The polymeric cytisine-enriched fibers based on poly(3-hydroxybutyrate) were obtained using electrospinning method. The biocompatibility study, advanced thermal analysis and release of cytisine from the poly(3-hydroxybutyrate) fibers were carried out. The nanofibers' morphology was evaluated by scanning electron microscopy. The formation and description of phases during the thermal processes of fibers by the advanced thermal analysis were examined. The new quantitative thermal analysis of polymeric fibers with cytisine phases based on vibrational, solid and liquid heat capacities was presented. The apparent heat capacity of fibers was measured using the standard differential scanning calorimetry. The quantitative analysis allowed for the study of the glass transition and melting/crystallization process. The mobile amorphous fraction, degree of crystallinity and rigid amorphous fraction were determined depending on the thermal history of semicrystalline polymeric fibers. Furthermore, the cytisine dissolution behaviour was studied. It was observed that the kinetic of the release from polymeric nanofiber is delayed than for the marketed product. The immunosafety of the tested polymeric nanofibers with cytisine was confirmed by the Food and Drug Agency Guidance as well as the European Medicines Agency. The polymeric matrix with cytisine seems to be a promising candidate for the prolonged release formulation.
BACKGROUND: Promotion of myelin repair in the context of demyelinating diseases such as multiple sclerosis (MS) still represents a clinical unmet need, given that this disease is not only characterized by autoimmune activities but also by impaired regeneration processes. Hence, this relates to replacement of lost oligodendrocytes and myelin sheaths-the primary targets of autoimmune attacks. Endogenous remyelination is mainly mediated via activation and differentiation of resident oligodendroglial precursor cells (OPCs), whereas its efficiency remains limited and declines with disease progression and aging. Teriflunomide has been approved as a first-line treatment for relapsing remitting MS. Beyond its role in acting via inhibition of de novo pyrimidine synthesis leading to a cytostatic effect on proliferating lymphocyte subsets, this study aims to uncover its potential to foster myelin repair. METHODS: Within the cuprizone mediated de-/remyelination model teriflunomide dependent effects on oligodendroglial homeostasis and maturation, related to cellular processes important for myelin repair were analyzed in vivo. Teriflunomide administration was performed either as pulse or continuously and markers specific for oligodendroglial maturation and mitochondrial integrity were examined by means of gene expression and immunohistochemical analyses. In addition, axon myelination was determined using electron microscopy. RESULTS: Both pulse and constant teriflunomide treatment efficiently boosted myelin repair activities in this model, leading to accelerated generation of oligodendrocytes and restoration of myelin sheaths. Moreover, teriflunomide restored mitochondrial integrity within oligodendroglial cells. CONCLUSIONS: The link between de novo pyrimidine synthesis inhibition, oligodendroglial rescue, and maintenance of mitochondrial homeostasis appears as a key for successful myelin repair and hence for protection of axons from degeneration.
OBJECTIVE: To evaluate the host- and biomechanical response to a fully absorbable poly-4-hydroxybutyrate (P4HB) scaffold in comparison with the response to polypropylene (PP) mesh. DESIGN: In vivo animal experiment. SETTING: KU Leuven Center for Surgical Technologies. POPULATION: Fourteen parous female Mule sheep. METHODS: P4HB scaffolds were surgically implanted in the posterior vaginal wall of sheep. The comparative PP mesh data were obtained from an identical study protocol performed previously. MAIN OUTCOME MEASURES: Gross necropsy, host response and biomechanical evaluation of explants, and the in vivo P4HB scaffold degradation were evaluated at 60- and 180-days post-implantation. Data are reported as mean ± standard deviation (SD) or standard error of the mean (SEM). RESULTS: Gross necropsy revealed no implant-related adverse events using P4HB scaffolds. The tensile stiffness of the P4HB explants increased at 180-days (12.498 ± 2.66 N/mm SEM [p =0.019]) as compared to 60-days (4.585 ± 1.57 N/mm) post-implantation, while P4HB degraded gradually. P4HB scaffolds exhibited excellent tissue integration with dense connective tissue and a moderate initial host response. P4HB scaffolds induced a significantly higher M2/M1 ratio (1.70 ± 0.67 SD, score 0-4), as compared to PP mesh(0.99 ± 0.78 SD, score 0-4) at 180-days. CONCLUSIONS: P4HB scaffold facilitated a gradual load transfer to vaginal tissue over time. The fully absorbable P4HB scaffold, in comparison to PP mesh, has a favorable host response with comparable load-bearing capacity. If these results are also observed at longer follow-up in-vivo, a clinical study using P4HB for vaginal POP surgery may be warranted to demonstrate efficacy. TWEETABLE ABSTRACT: Degradable vaginal P4HB implant might be a solution for treatment of POP.
- MeSH
- Biomechanical Phenomena MeSH
- Surgical Mesh * adverse effects MeSH
- Hydroxybutyrates MeSH
- Humans MeSH
- Sheep MeSH
- Polypropylenes * MeSH
- Vagina surgery MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH