Dehalogenation of haloalkanes by Mycobacterium tuberculosis H37Rv and other mycobacteria
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
10618227
PubMed Central
PMC91809
DOI
10.1128/aem.66.1.219-222.2000
Knihovny.cz E-zdroje
- MeSH
- alkany metabolismus MeSH
- chromatografie plynová MeSH
- hydrolasy chemie genetika metabolismus MeSH
- kolorimetrie MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- Mycobacterium avium komplex enzymologie genetika MeSH
- Mycobacterium smegmatis enzymologie genetika MeSH
- Mycobacterium tuberculosis enzymologie genetika MeSH
- mykobakteriózy mikrobiologie MeSH
- netuberkulózní mykobakterie enzymologie genetika MeSH
- plicní tuberkulóza mikrobiologie MeSH
- sekvence aminokyselin MeSH
- spektrofotometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alkany MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
Haloalkane dehalogenases convert haloalkanes to their corresponding alcohols by a hydrolytic mechanism. To date, various haloalkane dehalogenases have been isolated from bacteria colonizing environments that are contaminated with halogenated compounds. A search of current databases with the sequences of these known haloalkane dehalogenases revealed the presence of three different genes encoding putative haloalkane dehalogenases in the genome of the human parasite Mycobacterium tuberculosis H37Rv. The ability of M. tuberculosis and several other mycobacterial strains to dehalogenate haloaliphatic compounds was therefore studied. Intact cells of M. tuberculosis H37Rv were found to dehalogenate 1-chlorobutane, 1-chlorodecane, 1-bromobutane, and 1,2-dibromoethane. Nine isolates of mycobacteria from clinical material and four strains from a collection of microorganisms were found to be capable of dehalogenating 1,2-dibromoethane. Crude extracts prepared from two of these strains, Mycobacterium avium MU1 and Mycobacterium smegmatis CCM 4622, showed broad substrate specificity toward a number of halogenated substrates. Dehalogenase activity in the absence of oxygen and the identification of primary alcohols as the products of the reaction suggest a hydrolytic dehalogenation mechanism. The presence of dehalogenases in bacterial isolates from clinical material, including the species colonizing both animal tissues and free environment, indicates a possible role of parasitic microorganisms in the distribution of degradation genes in the environment.
Zobrazit více v PubMed
Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. PubMed
Armfield S J, Sallis P J, Baker P B, Bull A T, Hardman D J. Dehalogenation of haloalkanes by Rhodococcus erythropolis Y2. Biodegradation. 1995;6:237–246. PubMed
Cole S T, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537–544. PubMed
Cuff J A, Clamp M E, Siddigni A S, Finlay M, Barton G J. JPred: a consensus secondary structure prediction server. Bioinformatics. 1998;14:892–893. PubMed
Curragh H, Flynn O, Larkin M J, Stafford T M, Hamilton J T G, Harper D H. Haloalkane degradation and assimilation by Rhodococcus rhodochrous NCIMB 13064. Microbiology. 1994;140:1433–1442. PubMed
Damborsky J. Computer modelling of microbial hydrolytic dehalogenation. Pure Appl Chem. 1998;70:1375–1383.
Damborsky, J., and J. Koca. Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons. Prot. Eng., in press. PubMed
Fetzner S, Lingens F. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev. 1994;58:641–685. PubMed PMC
Hardman D J. Biotransformation of halogenated compounds. Crit Rev Biotech. 1991;11:1–40. PubMed
Holloway P, Trevors J T, Lee H. A colorimetric assay for detecting haloalkane dehalogenase activity. J Microbiol Methods. 1998;32:31–36.
Iwasaki I, Utsumi S, Ozawa T. New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bull Chem Soc Jpn. 1952;25:226.
Janssen D B, Pries F, Ploeg J, Kazemier B, Terpstra P, Witholt B. Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhla gene. J Bacteriol. 1989;171:6791–6799. PubMed PMC
Janssen D B, Pries F, Van der Ploeg J R. Genetics and biochemistry of dehalogenating enzymes. Annu Rev Microbiol. 1994;48:163–191. PubMed
Kulakova A N, Larkin M J, Kulakov L A. The plasmid-located haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064. Microbiology. 1997;143:109–115. PubMed
Leisinger T. Biodegradation of chlorinated aliphatic compounds. Curr Opin Biotech. 1996;7:295–300. PubMed
Leisinger T, Bader R. Microbial dehalogenation of synthetic organohalogen compounds: hydrolytic dehalogenases. Chimia. 1993;47:116–121.
MacFaddin J F. Media for isolation-cultivation-identification-maintenance of medical bacteria. 1985. pp. 458–464. , 557–579. Williams & Wilkins, Baltimore, Md.
Mucchielli-Giorgi M-H, Hazout S, Tuffery P. PredAcc: prediction of solvent accessibility. Bioinformatics. 1999;15:176–177. PubMed
Nagata Y, Miyauchi K, Damborsky J, Manova K, Ansorgova A, Takagi M. Purification and characterization of haloalkane dehalogenase of a new substrate class from a γ-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26. Appl Environ Microbiol. 1997;63:3707–3710. PubMed PMC
Nagata Y, Nariya T, Ohtomo R, Fukuda M, Yano K, Takagi M. Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of hexachlorocyclohexane in Pseudomonas paucimobilis. J Bacteriol. 1993;175:6403–6410. PubMed PMC
Philipp W J, Poulet S, Eiglmeier K, Pascopella L, Balasubramanian V, Heym B, Bergh S, Bloom B R, Jacobs W R, Cole S T. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc Natl Acad Sci USA. 1996;93:3132–3137. PubMed PMC
Sali A, Blundell T L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815. PubMed
Sallis P J, Armfield S J, Bull A T, Hardman D J. Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2. J Gen Microbiol. 1990;136:115–120. PubMed
Scholtz R, Schmuckle A, Cook A M, Leisinger T. Degradation of eighteen 1-monohaloalkanes by Arthrobacter sp. strain HA1. J Gen Microbiol. 1987;133:267–274.
Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. PubMed PMC
Vogel T M, Criddle C S, McCarty P L. Transformations of halogenated aliphatic compounds. Environ Sci Technol. 1987;21:722–736. PubMed
Yokota T, Omori T, Kodama T. Purification and properties of haloalkane dehalogenase from Corynebacterium sp. strain m15-3. J Bacteriol. 1987;169:4049–4054. PubMed PMC
Discovery of Novel Haloalkane Dehalogenase Inhibitors
Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases