Discovery of Novel Haloalkane Dehalogenase Inhibitors
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26773086
PubMed Central
PMC4784020
DOI
10.1128/aem.03916-15
PII: AEM.03916-15
Knihovny.cz E-zdroje
- MeSH
- hydrolasy antagonisté a inhibitory chemie MeSH
- inhibitory enzymů chemie izolace a purifikace metabolismus MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- Mycobacterium tuberculosis enzymologie MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- inhibitory enzymů MeSH
Haloalkane dehalogenases (HLDs) have recently been discovered in a number of bacteria, including symbionts and pathogens of both plants and humans. However, the biological roles of HLDs in these organisms are unclear. The development of efficient HLD inhibitors serving as molecular probes to explore their function would represent an important step toward a better understanding of these interesting enzymes. Here we report the identification of inhibitors for this enzyme family using two different approaches. The first builds on the structures of the enzymes' known substrates and led to the discovery of less potent nonspecific HLD inhibitors. The second approach involved the virtual screening of 150,000 potential inhibitors against the crystal structure of an HLD from the human pathogen Mycobacterium tuberculosis H37Rv. The best inhibitor exhibited high specificity for the target structure, with an inhibition constant of 3 μM and a molecular architecture that clearly differs from those of all known HLD substrates. The new inhibitors will be used to study the natural functions of HLDs in bacteria, to probe their mechanisms, and to achieve their stabilization.
Zobrazit více v PubMed
Koudelakova T, Bidmanova S, Dvorak P, Pavelka A, Chaloupkova R, Prokop Z, Damborsky J. 2013. Haloalkane dehalogenases: biotechnological applications. Biotechnol J 8:32–45. doi:10.1002/biot.201100486. PubMed DOI
Janssen DB, Gerritse J, Brackman J, Kalk C, Jager D, Witholt B. 1988. Purification and characterization of a bacterial dehalogenase with activity toward halogenated alkanes, alcohols and ethers. Eur J Biochem 171:67–72. doi:10.1111/j.1432-1033.1988.tb13759.x. PubMed DOI
Keuning S, Janssen DB, Witholt B. 1985. Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J Bacteriol 163:635–639. PubMed PMC
Nagata Y, Miyauchi K, Damborsky J, Manova K, Ansorgova A, Takagi M. 1997. Purification and characterization of haloalkane dehalogenase of a new substrate class from a gamma-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26. Appl Environ Microbiol 63:3707–3710. PubMed PMC
Koudelakova T, Chovancova E, Brezovsky J, Monincova M, Fortova A, Jarkovsky J, Damborsky J. 2011. Substrate specificity of haloalkane dehalogenases. Biochem J 2410:345–354. PubMed
Schanstra JP, Kingma J, Janssen DB. 1996. Specificity and kinetics of haloalkane dehalogenase. J Biol Chem 271:14747–14753. doi:10.1074/jbc.271.25.14747. PubMed DOI
Sallis PJ, Armfield SJ, Bull AT, Hardman DJ. 1990. Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2. J Gen Microbiol 136:115–120. doi:10.1099/00221287-136-1-115. PubMed DOI
Nagata Y, Nariya T, Ohtomo R, Fukuda M, Yano K, Takagi M. 1993. Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of gamma-hexachlorocyclohexane in Pseudomonas paucimobilis. J Bacteriol 175:6403–6410. PubMed PMC
Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S. 2002. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197. doi:10.1093/dnares/9.6.189. PubMed DOI
Sato Y, Monincova M, Chaloupkova R, Prokop Z, Ohtsubo Y, Minamisawa K, Tsuda M, Damborsky J, Nagata Y. 2005. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, encode haloalkane dehalogenases with novel structures and substrate specificities. Appl Environ Microbiol 71:4372–4379. doi:10.1128/AEM.71.8.4372-4379.2005. PubMed DOI PMC
Köhler R, Brokamp A, Schwarze R, Reiting RH, Schmidt FR. 1998. Characteristics and DNA-sequence of a cryptic haloalkanoic acid dehalogenase from Agrobacterium tumefaciens RS5. Curr Microbiol 36:96–101. doi:10.1007/s002849900286. PubMed DOI
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. doi:10.1038/31159. PubMed DOI
Fortova A, Sebestova E, Stepankova V, Koudelakova T, Palkova L, Damborsky J, Chaloupkova R. 2013. DspA from Strongylocentrotus purpuratus: the first biochemically characterized haloalkane dehalogenase of non-microbial origin. Biochimie 95:2091–2096. doi:10.1016/j.biochi.2013.07.025. PubMed DOI
Hasan K, Gora A, Brezovsky J, Chaloupkova R, Moskalikova H, Fortova A, Nagata Y, Damborsky J, Prokop Z. 2013. The effect of a unique halide-stabilizing residue on the catalytic properties of haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58. FEBS J 280:3149–3159. doi:10.1111/febs.12238. PubMed DOI
Jesenská A, Pavlova M, Strouhal M, Chaloupkova R, Tesinská I, Monincova M, Prokop Z, Bartos M, Pavlik I, Rychlik I, Möbius P, Nagata Y, Damborsky J. 2005. Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases. Appl Environ Microbiol 71:6736–6745. doi:10.1128/AEM.71.11.6736-6745.2005. PubMed DOI PMC
Irwin JJ, Shoichet BK. 2005. ZINC–a free database of commercially available compounds for virtual screening. J Chem Infect Model 45:177–182. doi:10.1021/ci049714+. PubMed DOI PMC
Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchinson GR. 2012. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17. doi:10.1186/1758-2946-4-17. PubMed DOI PMC
Sanner MF. 1999. Python: a programming language for software integration and development. J Mol Graph Model 17:57–61. PubMed
Mazumdar PA, Hulecki JC, Cherney MM, Garen CR, James MN. 2008. X-ray crystal structure of Mycobacterium tuberculosis haloalkane dehalogenase Rv2579. Biochim Biophys Acta 1784:351–362. doi:10.1016/j.bbapap.2007.10.014. PubMed DOI
Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A. 2005. H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33:W368–W371. doi:10.1093/nar/gki464. PubMed DOI PMC
Case DA, Darden TA, Cheatham TE, Simmerling CL III, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts BP, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvai I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA. 2010. AMBER 11 and AmberTooLs 1.5. University of California, San Francisco, CA.
Lee MC, Duan Y. 2004. Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins 55:620–634. doi:10.1002/prot.10470. PubMed DOI
Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. PubMed PMC
Durrant JD, McCammon JA. 2011. NNScore 2.0: a neural-network receptor-ligand scoring function. J Chem Infect Model 51:2897–2903. doi:10.1021/ci2003889. PubMed DOI PMC
Bouvier G, Evrard-Todeschi N, Girault J-P, Bertho G. 2010. Automatic clustering of docking poses in virtual screening process using self-organizing map. Bioinformatics 26:53–60. doi:10.1093/bioinformatics/btp623. PubMed DOI
Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R. 2007. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8:460. doi:10.1186/1471-2105-8-460. PubMed DOI PMC
Jakalian A, Jack DB, Bayly CI. 2002. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641. PubMed
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. 2004. Development and testing of a general amber force field. J Comput Chem 25:1157–1174. doi:10.1002/jcc.20035. PubMed DOI
Onufriev A, Bashford D, Case DA. 2004. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55:383–394. doi:10.1002/prot.20033. PubMed DOI
Hou T, Wang J, Li Y, Wang W. 2011. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J Comput Chem 32:866–877. PubMed PMC
Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks CL. 2004. Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J Comput Chem 25:265–284. doi:10.1002/jcc.10378. PubMed DOI
Weiser J, Shenkin PS, Still WC. 1999. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20:217–230. doi:10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A. DOI
Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. 2012. MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321. doi:10.1021/ct300418h. PubMed DOI
Nagata Y, Prokop Z, Sato Y, Jerabek P, Kumar A, Ohtsubo Y, Tsuda M, Damborsky J. 2005. Degradation of beta-hexachlorocyclohexane by haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Appl Environ Microbiol 71:2183–2185. doi:10.1128/AEM.71.4.2183-2185.2005. PubMed DOI PMC
Iwasaki I, Utsumi S, Ozawa T. 1952. New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bull Chem Soc Jpn 25:226. doi:10.1246/bcsj.25.226. DOI
Holloway P, Trevors JT, Lee H. 1998. A colorimetric assay for detecting haloalkane dehalogenase activity. J Microbiol Methods 32:31–36. doi:10.1016/S0167-7012(98)00008-6. DOI
Bohác M, Nagata Y, Prokop Z, Prokop M, Monincova M, Tsuda M, Koca J, Damborsky J. 2002. Halide-stabilizing residues of haloalkane dehalogenases studied by quantum mechanic calculations and site-directed mutagenesis. Biochemistry 41:14272–14280. doi:10.1021/bi026427v. PubMed DOI
Kulakova AN, Larkin MJ, Kulakov LA. 1997. The plasmid-located haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064. Microbiology 143:109–115. doi:10.1099/00221287-143-1-109. PubMed DOI
Jesenská A, Sedlacek I, Damborsky J. 2000. Dehalogenation of haloalkanes by Mycobacterium tuberculosis H37Rv and other mycobacteria. Appl Environ Microbiol 66:219–222. doi:10.1128/AEM.66.1.219-222.2000. PubMed DOI PMC
Ryoo SW, Park YK, Park SN, Shim YS, Liew H, Kang S, Bai GH. 2007. Comparative proteomic analysis of virulent Korean Mycobacterium tuberculosis K-strain with other mycobacteria strain following infection of U-937 macrophage. J Microbiol 45:268–271. PubMed
Schrodinger LLC. 2010. The PyMOL molecular graphics system, version 1.3r1.
Neklesa TK, Noblin DJ, Kuzin A, Lew S, Seetharaman J, Acton TB, Kornhaber G, Xiao R, Montelione GT, Tong L, Crews CM. 2013. A bidirectional system for the dynamic small molecule control of intracellular fusion proteins. ACS Chem Biol 8:2293–2300. doi:10.1021/cb400569k. PubMed DOI PMC
Prokop Z, Monincova M, Chaloupkova R, Klvana M, Nagata Y, Janssen DB, Damborsky J. 2003. Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. J Biol Chem 46:45094–45100. PubMed
Guan L, Yabuki H, Okai M, Ohtsuka J, Tanokura M. 2014. Crystal structure of the novel haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58 reveals a special halide-stabilizing pair and enantioselectivity mechanism. Appl Microbiol Biotechnol 98:8573–8582. doi:10.1007/s00253-014-5751-2. PubMed DOI
Babine RE, Bender SL. 1997. Molecular recognition of protein-ligand complexes: applications to drug design. Chem Rev 2665:1359–1472. PubMed
Livnah O, Bayer EA, Wilchek M, Sussman JL. 1993. Three-dimensional structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci U S A 90:5076–5080. doi:10.1073/pnas.90.11.5076. PubMed DOI PMC
Todd MJ, Gomez J. 2001. Enzyme kinetics determined using calorimetry: a general assay for enzyme activity? Anal Biochem 2:179–187. doi:10.1006/abio.2001.5218. PubMed DOI