Halide-stabilizing residues of haloalkane dehalogenases studied by quantum mechanic calculations and site-directed mutagenesis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, validační studie
PubMed
12450392
DOI
10.1021/bi026427v
PII: bi026427v
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny chemie genetika MeSH
- anionty chemie MeSH
- asparagin genetika MeSH
- chemické modely MeSH
- fenylalanin genetika MeSH
- halogeny chemie MeSH
- histidin genetika MeSH
- hydrolasy chemie genetika MeSH
- isoleucin genetika MeSH
- kvantová teorie * MeSH
- kyselina glutamová genetika MeSH
- leucin genetika MeSH
- matematické výpočty počítačové MeSH
- mutageneze cílená * MeSH
- prolin genetika MeSH
- statická elektřina MeSH
- tryptofan genetika MeSH
- valin genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
- Názvy látek
- aminokyseliny MeSH
- anionty MeSH
- asparagin MeSH
- fenylalanin MeSH
- haloalcohol dehalogenase MeSH Prohlížeč
- haloalkane dehalogenase MeSH Prohlížeč
- halogeny MeSH
- histidin MeSH
- hydrolasy MeSH
- isoleucin MeSH
- kyselina glutamová MeSH
- leucin MeSH
- prolin MeSH
- tryptofan MeSH
- valin MeSH
Haloalkane dehalogenases catalyze cleavage of the carbon-halogen bond in halogenated aliphatic compounds, resulting in the formation of an alcohol, a halide, and a proton as the reaction products. Three structural features of haloalkane dehalogenases are essential for their catalytic performance: (i) a catalytic triad, (ii) an oxyanion hole, and (iii) the halide-stabilizing residues. Halide-stabilizing residues are not structurally conserved among different haloalkane dehalogenases. The level of stabilization of the transition state structure of S(N)2 reaction and halide ion provided by each of the active site residues in the enzymes DhlA, LinB, and DhaA was quantified by quantum mechanic calculations. The residues that significantly stabilize the halide ion were assigned as the primary (essential) or the secondary (less important) halide-stabilizing residues. Site-directed mutagenesis was conducted with LinB enzyme to confirm location of its primary halide-stabilizing residues. Asn38Asp, Asn38Glu, Asn38Phe, Asn38Gln, Trp109Leu, Phe151Leu, Phe151Trp, Phe151Tyr, and Phe169Leu mutants of LinB were constructed, purified, and kinetically characterized. The following active site residues were classified as the primary halide-stabilizing residues: Trp125 and Trp175 of DhlA; Asn38 and Trp109 of LinB; and Asn41 and Trp107 of DhaA. All these residues make a hydrogen bond with the halide ion released from the substrate molecule, and their substitution results in enzymes with significantly modified catalytic properties. The following active site residues were classified as the secondary halide-stabilizing residues: Phe172, Pro223, and Val226 of DhlA; Trp207, Pro208, and Ile211 of LinB; and Phe205, Pro206, and Ile209 of DhaA. The differences in the halide stabilizing residues of three haloalkane dehalogenases are discussed in the light of molecular adaptation of these enzymes to their substrates.
Citace poskytuje Crossref.org
Discovery of Novel Haloalkane Dehalogenase Inhibitors