Ergothioneine (EGT) is a diet-derived, atypical amino acid that accumulates to high levels in human tissues. Reduced EGT levels have been linked to age-related disorders, including neurodegenerative and cardiovascular diseases, while EGT supplementation is protective in a broad range of disease and aging models. Despite these promising data, the direct and physiologically relevant molecular target of EGT has remained elusive. Here, we use a systematic approach to identify how mitochondria remodel their metabolome in response to exercise training. From these data, we find that EGT accumulates in muscle mitochondria upon exercise training. Proteome-wide thermal stability studies identify 3-mercaptopyruvate sulfurtransferase (MPST) as a direct molecular target of EGT; EGT binds to and activates MPST, thereby boosting mitochondrial respiration and exercise training performance in mice. Together, these data identify the first physiologically relevant EGT target and establish the EGT-MPST axis as a molecular mechanism for regulating mitochondrial function and exercise performance.
- MeSH
- Ergothioneine * metabolism pharmacology MeSH
- Physical Conditioning, Animal * MeSH
- Humans MeSH
- Mitochondria * metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Sulfurtransferases * metabolism MeSH
- Mitochondria, Muscle * metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Changes in the protonation state of lyophilized proteins can impact structural integrity, chemical stability, and propensity to aggregate upon reconstitution. When a buffer is chosen, the freezing/drying process may result in dramatic changes in the protonation state of the protein due to ionization shift of the buffer. In order to determine whether protonation shifts are occurring, ionizable probes can be added to the formulation. Optical probes (dyes) have shown dramatic ionization changes in lyophilized products, but it is unclear whether the pH indicator is uniform throughout the matrix and whether the change in the pH indicator actually mirrors drug ionization changes. In solid-state NMR (SSNMR) spectroscopy, the chemical shift of the carbonyl carbon in carboxylic acids is very sensitive to the ionization state of the acid. Therefore, SSNMR can be used to measure ionization changes in a lyophilized matrix by employing a small quantity of an isotopically-labeled carboxylic acid species in the formulation. This paper compares the apparent pH of six trehalose-containing lyophilized buffer systems using SSNMR and UV-Vis diffuse reflectance spectroscopy (UVDRS). Both SSNMR and UVDRS results using two different ionization probes (butyric acid and bromocresol purple, respectively) showed little change in apparent acidity compared to the pre-lyophilized solution in a sodium citrate buffer, but a greater change was observed in potassium phosphate, sodium phosphate, and histidine buffers. While the trends between the two methods were similar, there were differences in the numerical values of equivalent pH (pHeq) observed between the two methods. The potential causes contributing to the differences are discussed.
- MeSH
- Phosphates * chemistry MeSH
- Histidine * chemistry MeSH
- Hydrogen-Ion Concentration MeSH
- Citric Acid chemistry MeSH
- Freeze Drying * methods MeSH
- Magnetic Resonance Spectroscopy * methods MeSH
- Buffers MeSH
- Spectrophotometry, Ultraviolet methods MeSH
- Trehalose * chemistry MeSH
- Publication type
- Journal Article MeSH
Multiple sclerosis (MS) is a demyelinating and neurodegenerative autoimmune disease of the central nervous system (CNS) damaging myelin and axons. Diagnosis is based on the combination of clinical findings, magnetic resonance imaging (MRI) and analysis of cerebrospinal fluid (CSF). Metabolomics is a systematic study that allows us to track amounts of different metabolites in a chosen medium. The aim of this study was to establish metabolomic differences between the cerebrospinal fluid of patients in the early stages of multiple sclerosis and healthy controls, which could potentially serve as markers for predicting disease activity. We collected CSF from 40 patients after the first attack of clinical symptoms who fulfilled revised McDonald criteria of MS, and the CSF of 33 controls. Analyses of CSF samples were performed by using the high-performance liquid chromatography system coupled with a mass spectrometer with a high-resolution detector. Significant changes in concentrations of arginine, histidine, spermidine, glutamate, choline, tyrosine, serine, oleic acid, stearic acid and linoleic acid were observed. More prominently, Expanded Disability Status Scale values significantly correlated with lower concentrations of histidine. We conclude that these metabolites could potentially play a role as a biomarker of disease activity and predict presumable inflammatory changes.
- MeSH
- Biomarkers cerebrospinal fluid MeSH
- Central Nervous System MeSH
- Histidine MeSH
- Humans MeSH
- Fatty Acids MeSH
- Metabolomics MeSH
- Multiple Sclerosis * diagnostic imaging cerebrospinal fluid MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- MeSH
- Nutritional Physiological Phenomena MeSH
- Histamine physiology metabolism adverse effects MeSH
- Histidine * physiology metabolism MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Popular Work MeSH
The utilization of nanoparticles for the intracellular delivery of theranostic agents faces one substantial limitation. Sequestration in intracellular vesicles prevents them from reaching the desired location in the cytoplasm or nucleus to deliver their cargo. We investigated whether three different cell-penetrating peptides (CPPs), namely, octa-arginine R8, polyhistidine KH27K and histidine-rich LAH4, could promote cytosolic and/or nuclear transfer of unique model nanoparticles-pseudovirions derived from murine polyomavirus. Two types of CPP-modified pseudovirions that carry the luciferase reporter gene were created: VirPorters-IN with CPPs genetically attached to the capsid interior and VirPorters-EX with CPPs noncovalently associated with the capsid exterior. We tested their transduction ability by luciferase assay and monitored their presence in subcellular fractions. Our results confirmed the overall effect of CPPs on the intracellular destination of the particles and suggested that KH27K has the potential to improve the cytosolic release of pseudovirions. None of the VirPorters caused endomembrane damage detectable by the Galectin-3 assay. Remarkably, a noncovalent modification was required to promote high transduction of the reporter gene and cytosolic delivery of pseudovirions mediated by LAH4. Together, CPPs in different arrangements have demonstrated their potential to improve pseudovirion invasion into cells, and these findings could be useful for the development of other nanoparticle-based delivery systems.
The aim of the article is to examine side effects of increased dietary intake of amino acids, which are commonly used as a dietary supplement. In addition to toxicity, mutagenicity and carcinogenicity, attention is focused on renal and gastrointestinal tract functions, ammonia production, and consequences of a competition with other amino acids for a carrier at the cell membranes and enzymes responsible for their degradation. In alphabetic order are examined arginine, beta-alanine, branched-chain amino acids, carnosine, citrulline, creatine, glutamine, histidine, beta -hydroxy- beta -methylbutyrate, leucine, and tryptophan. In the article is shown that enhanced intake of most amino acid supplements may not be risk-free and can cause a number of detrimental side effects. Further research is necessary to elucidate effects of high doses and long-term consumption of amino acid supplements on immune system, brain function, muscle protein balance, synthesis of toxic metabolites, and tumor growth and examine their suitability under certain circumstances. These include elderly, childhood, pregnancy, nursing a baby, and medical condition, such as diabetes and liver disease. Studies are also needed to examine adaptive response to a long-term intake of any substance and consequences of discontinuation of supplementation.
- MeSH
- Amino Acids adverse effects metabolism MeSH
- Arginine pharmacology MeSH
- Child MeSH
- Glutamine * metabolism pharmacology MeSH
- Histidine metabolism MeSH
- Muscle, Skeletal metabolism MeSH
- Humans MeSH
- Dietary Supplements * adverse effects MeSH
- Aged MeSH
- Pregnancy MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Aged MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Histidine (HIS) is investigated for therapy of various disorders and as a nutritional supplement to enhance muscle performance. We examined effects of HIS on amino acid and protein metabolism. Rats consumed HIS in a drinking water at a dose of 0.5 g/l (low HIS), 2 g/l (high HIS) or 0 g/l (control) for 4 weeks. At the end of the study, the animals were euthanized and blood plasma, liver, soleus (SOL), tibialis (TIB), and extensor digitorum longus (EDL) muscles analysed. HIS supplementation increased food intake, body weight and weights and protein contents of the liver and kidneys, but not muscles. In blood plasma there were increases in glucose, urea, and several amino acids, particularly alanine, proline, aspartate, and glutamate and in high HIS group, ammonia was increased. The main findings in the liver were decreased concentrations of methionine, aspartate, and glycine and increased alanine. In muscles of HIS-consuming animals increased alanine and glutamine. In high HIS group (in SOL and TIB) increased chymotrypsin-like activity of proteasome (indicates increased proteolysis); in SOL decreased anserine (beta-alanyl-N1-methylhistidine). We conclude that HIS supplementation increases ammonia production, alanine and glutamine synthesis in muscles, affects turnover of proteins and HIS-containing peptides, and increases requirements for glycine and methionine.
- MeSH
- Amino Acids metabolism MeSH
- Histidine administration & dosage MeSH
- Liver metabolism MeSH
- Random Allocation MeSH
- Rats, Wistar MeSH
- Dietary Supplements MeSH
- Proteasome Endopeptidase Complex metabolism MeSH
- Muscles metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Histidine (HIS) is an essential amino acid investigated for therapy of various diseases, used for tissue protection in transplantation and cardiac surgery, and as a supplement to increase muscle performance. The data presented in the review show that HIS administration may increase ammonia and affect the level of several amino acids. The most common are increased levels of alanine, glutamine, and glutamate and decreased levels of glycine and branched-chain amino acids (BCAA, valine, leucine, and isoleucine). The suggested pathogenic mechanisms include increased flux of HIS through HIS degradation pathway (increases in ammonia and glutamate), increased ammonia detoxification to glutamine and exchange of the BCAA with glutamine via L-transporter system in muscles (increase in glutamine and decrease in BCAA), and tetrahydrofolate depletion (decrease in glycine). Increased alanine concentration is explained by enhanced synthesis in extrahepatic tissues and impaired transamination in the liver. Increased ammonia and glutamine and decreased BCAA levels in HIS-treated subjects indicate that HIS supplementation is inappropriate in patients with liver injury. The studies investigating the possibilities to elevate carnosine (beta-alanyl-L-histidine) content in muscles show positive effects of beta-alanine and inconsistent effects of HIS supplementation. Several studies demonstrate HIS depletion due to enhanced availability of methionine, glutamine, or beta-alanine.
- MeSH
- Amino Acids metabolism MeSH
- Ammonia metabolism MeSH
- Histidine pharmacology MeSH
- Liver drug effects metabolism MeSH
- Muscle, Skeletal drug effects metabolism MeSH
- Humans MeSH
- Dietary Supplements MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Nickel is the most frequent cause of T cell-mediated allergic contact dermatitis worldwide. In vitro, CD4+ T cells from all donors respond to nickel but the involved αβ T cell receptor (TCR) repertoire has not been comprehensively analyzed. METHODS: We introduce CD154 (CD40L) upregulation as a fast, unbiased, and quantitative method to detect nickel-specific CD4+ T cells ex vivo in blood of clinically characterized allergic and non allergic donors. Naïve (CCR7+ CD45RA+) and memory (not naïve) CD154+ CD4+ T cells were analyzed by flow cytometry after 5 hours of stimulation with 200 µmol/L NiSO4 ., TCR α- and β-chains of sorted nickel-specific and control cells were studied by high-throughput sequencing. RESULTS: Stimulation of PBMCs with NiSO4 induced CD154 expression on ~0.1% (mean) of naïve and memory CD4+ T cells. In allergic donors with recent positive patch test, memory frequencies further increased ~13-fold and were associated with markers of in vivo activation. CD154 expression was TCR-mediated since single clones could be specifically restimulated. Among nickel-specific CD4+ T cells of allergic and non allergic donors, TCRs expressing the α-chain segment TRAV9-2 or a histidine in their α- or β-chain complementarity determining region 3 (CDR3) were highly overrepresented. CONCLUSIONS: Induced CD154 expression represents a reliable method to study nickel-specific CD4+ T cells. TCRs with particular features respond in all donors, while strongly increased blood frequencies indicate nickel allergy for some donors. Our approach may be extended to other contact allergens for the further development of diagnostic and predictive in vitro tests.
L-histidine (HIS) is an essential amino acid with unique roles in proton buffering, metal ion chelation, scavenging of reactive oxygen and nitrogen species, erythropoiesis, and the histaminergic system. Several HIS-rich proteins (e.g., haemoproteins, HIS-rich glycoproteins, histatins, HIS-rich calcium-binding protein, and filaggrin), HIS-containing dipeptides (particularly carnosine), and methyl- and sulphur-containing derivatives of HIS (3-methylhistidine, 1-methylhistidine, and ergothioneine) have specific functions. The unique chemical properties and physiological functions are the basis of the theoretical rationale to suggest HIS supplementation in a wide range of conditions. Several decades of experience have confirmed the effectiveness of HIS as a component of solutions used for organ preservation and myocardial protection in cardiac surgery. Further studies are needed to elucidate the effects of HIS supplementation on neurological disorders, atopic dermatitis, metabolic syndrome, diabetes, uraemic anaemia, ulcers, inflammatory bowel diseases, malignancies, and muscle performance during strenuous exercise. Signs of toxicity, mutagenic activity, and allergic reactions or peptic ulcers have not been reported, although HIS is a histamine precursor. Of concern should be findings of hepatic enlargement and increases in ammonia and glutamine and of decrease in branched-chain amino acids (valine, leucine, and isoleucine) in blood plasma indicating that HIS supplementation is inappropriate in patients with liver disease.
- MeSH
- Ammonia metabolism MeSH
- Dermatitis, Atopic therapy MeSH
- Chelating Agents MeSH
- Glutamine metabolism MeSH
- Histamine MeSH
- Histidine * adverse effects chemistry physiology therapeutic use MeSH
- Hypertrophy etiology MeSH
- Liver metabolism pathology MeSH
- Contraindications MeSH
- Humans MeSH
- Metabolic Syndrome therapy MeSH
- Liver Diseases metabolism MeSH
- Nervous System Diseases therapy MeSH
- Dietary Supplements * MeSH
- Organ Preservation Solutions MeSH
- Free Radical Scavengers MeSH
- Amino Acids, Branched-Chain metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH