Conformational changes allow processing of bulky substrates by a haloalkane dehalogenase with a small and buried active site

. 2018 Jul 20 ; 293 (29) : 11505-11512. [epub] 20180601

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29858243
Odkazy

PubMed 29858243
PubMed Central PMC6065182
DOI 10.1074/jbc.ra117.000328
PII: S0021-9258(20)31572-6
Knihovny.cz E-zdroje

Haloalkane dehalogenases catalyze the hydrolysis of halogen-carbon bonds in organic halogenated compounds and as such are of great utility as biocatalysts. The crystal structures of the haloalkane dehalogenase DhlA from the bacterium from Xanthobacter autotrophicus GJ10, specifically adapted for the conversion of the small 1,2-dichloroethane (DCE) molecule, display the smallest catalytic site (110 Å3) within this enzyme family. However, during a substrate-specificity screening, we noted that DhlA can catalyze the conversion of far bulkier substrates, such as the 4-(bromomethyl)-6,7-dimethoxy-coumarin (220 Å3). This large substrate cannot bind to DhlA without conformational alterations. These conformational changes have been previously inferred from kinetic analysis, but their structural basis has not been understood. Using molecular dynamic simulations, we demonstrate here the intrinsic flexibility of part of the cap domain that allows DhlA to accommodate bulky substrates. The simulations displayed two routes for transport of substrates to the active site, one of which requires the conformational change and is likely the route for bulky substrates. These results provide insights into the structure-dynamics function relationships in enzymes with deeply buried active sites. Moreover, understanding the structural basis for the molecular adaptation of DhlA to 1,2-dichloroethane introduced into the biosphere during the industrial revolution provides a valuable lesson in enzyme design by nature.

Zobrazit více v PubMed

Koudelakova T., Bidmanova S., Dvorak P., Pavelka A., Chaloupkova R., Prokop Z., and Damborsky J. (2013) Haloalkane dehalogenases: Biotechnological applications. Biotechnol. J. 8, 32–45 10.1002/biot.201100486 PubMed DOI

Nagata Y., Ohtsubo Y., and Tsuda M. (2015) Properties and biotechnological applications of natural and engineered haloalkane dehalogenases. Appl. Microbiol. Biotechnol. 99, 9865–9881 10.1007/s00253-015-6954-x PubMed DOI

Schanstra J. P., Ridder I. S., Heimeriks G. J., Rink R., Poelarends G. J., Kalk K. H., Dijkstra B. W., and Janssen D. B. (1996) Kinetic characterization and X-ray structure of a mutant of haloalkane dehalogenase with higher catalytic activity and modified substrate range. Biochemistry 35, 13186–13195 10.1021/bi961151a PubMed DOI

Schanstra J. P., Kingma J., and Janssen D. B. (1996) Specificity and kinetics of haloalkane dehalogenase. J. Biol. Chem. 271, 14747–14753 10.1074/jbc.271.25.14747 PubMed DOI

Pikkemaat M. G., and Janssen D. B. (2002) Generating segmental mutations in haloalkane dehalogenase: A novel part in the directed evolution toolbox. Nucleic Acids Res. 30, E35–E35 10.1093/nar/30.8.e35 PubMed DOI PMC

Holloway P., Knoke K. L., Trevors J. T., and Lee H. (1998) Alteration of the substrate range of haloalkane dehalogenase by site-directed mutagenesis. Biotechnol. Bioeng. 59, 520–523 10.1002/(SICI)1097-0290(19980820)59:4%3C520::AID-BIT16%3E3.0.CO%3B2-D PubMed DOI

Pikkemaat M. G., Linssen A. B., Berendsen H. J., and Janssen D. B. (2002) Molecular dynamics simulations as a tool for improving protein stability. Protein Eng. 15, 185–192 10.1093/protein/15.3.185 PubMed DOI

Sharir-Ivry A., Varatharaj R., and Shurki A. (2015) Valence bond and enzyme catalysis: A time to break down and a time to build up. Chemistry 21, 7159–7169 10.1002/chem.201406236 PubMed DOI

Pries F., van den Wijngaard A. J., Bos R., Pentenga M., and Janssen D. B. (1994) The role of spontaneous cap domain mutations in haloalkane dehalogenase specificity and evolution. J. Biol. Chem. 269, 17490–17494 PubMed

Otyepka M., and Damborský J. (2002) Functionally relevant motions of haloalkane dehalogenases occur in the specificity-modulating cap domains. Protein Sci. 11, 1206–1217 10.1110/ps.ps3830102 PubMed DOI PMC

Schanstra J. P., and Janssen D. B. (1996) Kinetics of halide release of haloalkane dehalogenase: evidence for a slow conformational change. Biochemistry 35, 5624–5632 10.1021/bi952904g PubMed DOI

Krooshof G. H., Floris R., Tepper A. W., and Janssen D. B. (1999) Thermodynamic analysis of halide binding to haloalkane dehalogenase suggests the occurrence of large conformational changes. Protein Sci. 8, 355–360 10.1110/ps.8.2.355 PubMed DOI PMC

Liu X., Hanson B. L., Langan P., and Viola R. E. (2007) The effect of deuteration on protein structure: A high-resolution comparison of hydrogenous and perdeuterated haloalkane dehalogenase. Acta Crystallogr. D. Biol. Crystallogr. 63, 1000–1008 10.1107/S0907444907037705 PubMed DOI

Verschueren K. H., Seljée F., Rozeboom H. J., Kalk K. H., and Dijkstra B. W. (1993) Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363, 693–698 10.1038/363693a0 PubMed DOI

Rozeboom H. J., Kingma J., Janssen D. B., and Dijkstra B. W. (1988) Crystallization of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J. Mol. Biol. 200, 611–612 10.1016/0022-2836(88)90548-7 PubMed DOI

Pikkemaat M. G., Ridder I. S., Rozeboom H. J., Kalk K. H., Dijkstra B. W., and Janssen D. B. (1999) Crystallographic and kinetic evidence of a collision complex formed during halide import in haloalkane dehalogenase. Biochemistry 38, 12052–12061 PubMed

Koudelakova T., Chovancova E., Brezovsky J., Monincova M., Fortova A., Jarkovsky J., and Damborsky J. (2011) Substrate specificity of haloalkane dehalogenases. Biochem. J. 435, 345–354 10.1042/BJ20101405 PubMed DOI

Markwick P. R. L., and McCammon J. A. (2011) Studying functional dynamics in bio-molecules using accelerated molecular dynamics. Phys. Chem. Chem. Phys. 13, 20053–20065 10.1039/c1cp22100k PubMed DOI

Case D. A., Berryman J. T., Betz R. M., Cerutti D. S., Cheatham T., Darden T. A., Duke R. E., Giese T. J., Gohlke H., Goetz A. W., Homeyer N., Izadi S., Janowski P., Kaus J., Kovalenko A., et al. (2015) AMBER 2015. University of California, San Francisco

Krooshof G. H., Ridder I. S., Tepper A. W., Vos G. J., Rozeboom H. J., Kalk K. H., Dijkstra B. W., and Janssen D. B. (1998) Kinetic analysis and X-ray structure of haloalkane dehalogenase with a modified halide-binding site. Biochemistry 37, 15013–15023 10.1021/bi9815187 PubMed DOI

Kennes C., Pries F., Krooshof G. H., Bokma E., Kingma J., and Janssen D. B. (1995) Replacement of tryptophan residues in haloalkane dehalogenase reduces halide binding and catalytic activity. Eur. J. Biochem. 228, 403–407 10.1111/j.1432-1033.1995.00403.x PubMed DOI

Harvey M. J., Giupponi G., and Fabritiis G. D. (2009) ACEMD: Accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput. 5, 1632–1639 10.1021/ct9000685 PubMed DOI

Brooks B. R., Brooks C. L. 3rd, Mackerell A. D. Jr., Nilsson L., Petrella R. J., Roux B., Won Y., Archontis G., Bartels C., Boresch S., Caflisch A., Caves L., Cui Q., Dinner A. R., Feig M., Fischer S., et al. (2009) CHARMM: The biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 10.1002/jcc.21287 PubMed DOI PMC

Lovell S. C., Davis I. W., Arendall W. B. 3rd, de Bakker P. I., Word J. M., Prisant M. G., Richardson J. S., and Richardson D. C. (2003) Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins 50, 437–450 10.1002/prot.10286 PubMed DOI

Anandakrishnan R., Aguilar B., and Onufriev A. V. (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 40, W537–W541 10.1093/nar/gks375 PubMed DOI PMC

Petřek M., Otyepka M., Banáš P., Košinová P., Koča J., and Damborský J. (2006) CAVER: A new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7, 316 10.1186/1471-2105-7-316 PubMed DOI PMC

Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., Gora A., Sustr V., Klvana M., Medek P., Biedermannova L., Sochor J., and Damborsky J. (2012) CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 10.1371/journal.pcbi.1002708 PubMed DOI PMC

Stucki G., and Thueer M. (1995) Experiences of a large-scale application of 1,2-dichloroethane degrading microorganisms for groundwater treatment. Environ. Sci. Technol. 29, 2339–2345 10.1021/es00009a028 PubMed DOI

Damborský J., and Koca J. (1999) Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons. Protein Eng. 12, 989–998 10.1093/protein/12.11.989 PubMed DOI

Boháč M., Nagata Y., Prokop Z., Prokop M., Monincová M., Tsuda M., Koča J., and Damborský J. (2002) Halide-stabilizing residues of haloalkane dehalogenases studied by quantum mechanic calculations and site-directed mutagenesis. Biochemistry 41, 14272–14280 PubMed

Rogne P., Rosselin M., Grundström C., Hedberg C., Sauer U. H., and Wolf-Watz M. (2018) Molecular mechanism of ATP versus GTP selectivity of adenylate kinase. Proc. Natl. Acad. Sci. U.S.A. 115, 3012–3017 10.1073/pnas.1721508115 PubMed DOI PMC

Blaha-Nelson D., Krüger D. M., Szeler K., Ben-David M., and Kamerlin S. C. (2017) Active site hydrophobicity and the convergent evolution of paraoxonase activity in structurally divergent enzymes: The case of serum paraoxonase 1. J. Am. Chem. Soc. 139, 1155–1167 10.1021/jacs.6b10801 PubMed DOI PMC

Shek R., Dattmore D. A., Stives D. P., Jackson A. L., Chatfield C. H., Hicks K. A., and French J. B. (2017) Structural and functional basis for targeting Campylobacter jejuni agmatine deiminase to overcome antibiotic resistance. Biochemistry 56, 6734–6742 10.1021/acs.biochem.7b00982 PubMed DOI PMC

Piccirillo E., Alegria T. G. P., Discola K. F., Cussiol J. R. R., Domingos R. M., de Oliveira M. A., Rezende L., de Netto L. E. S., and Amaral A. T.-d. (2018) Structural insights on the efficient catalysis of hydroperoxide reduction by Ohr: Crystallographic and molecular dynamics approaches. PloS One 13, e0196918 10.1371/journal.pone.0196918 PubMed DOI PMC

Margues S., Brezovsky J., and Damborsky J. (2016) Role of tunnels and gates in enzymatic catalysis. In Understanding Enzymes: Function, Design, Engineering, and Analysis (Svendsen A., ed.), pp. 421–463, Pan Stanford Publishing, CRC Press, Boca Raton, FL

Boehr D. D., D'Amico R. N., and O'Rourke K. F. (2018) Engineered control of enzyme structural dynamics and function. Protein Sci. 27, 825–838 10.1002/pro.3379 PubMed DOI PMC

Narayanan C., Bernard D. N., and Doucet N. (2016) Role of conformational motions in enzyme function: Selected methodologies and case studies. Catalysts 6, 81 10.3390/catal6060081 PubMed DOI PMC

Doerr S., and De Fabritiis G. (2014) On-the-fly learning and sampling of ligand binding by high-throughput molecular simulations. J. Chem. Theory Comput. 10, 2064–2069 10.1021/ct400919u PubMed DOI

Brezovsky J., Babkova P., Degtjarik O., Fortova A., Gora A., Iermak I., Rezacova P., Dvorak P., Smatanova I. K., Prokop Z., Chaloupkova R., and Damborsky Jiri (2016) Engineering a de novo transport tunnel. ACS Catal. 6, 7597–7610 10.1021/acscatal.6b02081 DOI

Johnson K. A., Simpson Z. B., and Blom T. (2009) Global kinetic explorer: A new computer program for dynamic simulation and fitting of kinetic data. Anal. Biochem. 387, 20–29 10.1016/j.ab.2008.12.024 PubMed DOI

Johnson K. A., Simpson Z. B., and Blom T. (2009) FitSpace explorer: An algorithm to evaluate multidimensional parameter space in fitting kinetic data. Anal. Biochem. 387, 30–41 10.1016/j.ab.2008.12.025 PubMed DOI

Rose P. W., Bi C., Bluhm W. F., Christie C. H., Dimitropoulos D., Dutta S., Green R. K., Goodsell D. S., Prlic A., Quesada M., Quinn G. B., Ramos A. G., Westbrook J. D., Young J., Zardecki C., Berman H. M., and Bourne P. E. (2013) The RCSB Protein Data Bank: New resources for research and education. Nucleic Acids Res. 41, D475–D482 10.1093/nar/gks1200 PubMed DOI PMC

Liang J., Woodward C., and Edelsbrunner H. (1998) Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci. 7, 1884–1897 10.1002/pro.5560070905 PubMed DOI PMC

Vanquelef E., Simon S., Marquant G., Garcia E., Klimerak G., Delepine J. C., Cieplak P., and Dupradeau F.-Y. (2011) R.E.D. Server: A web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 39, W511–W517 10.1093/nar/gkr288 PubMed DOI PMC

Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., and Case D. A. (2004) Development and testing of a general Amber force field. J. Comput. Chem. 25, 1157–1174 10.1002/jcc.20035 PubMed DOI

Wang J., Wang W., Kollman P. A., and Case D. A. (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 10.1016/j.jmgm.2005.12.005 PubMed DOI

Maier J. A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K. E., and Simmerling C. (2015) ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 10.1021/acs.jctc.5b00255 PubMed DOI PMC

Darden T., York D., and Pedersen L. (1993) Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 10.1063/1.464397 DOI

Ryckaert J.-P., Ciccotti G., and Berendsen H. J. (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of N-alkanes. J. Computational Phys. 23, 327–341 10.1016/0021-9991(77)90098-5 DOI

Humphrey W., Dalke A., and Schulten K. (1996) VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–28 10.1016/0263-7855(96)00018-5 PubMed DOI

Schrödinger, LLC The PyMOL Molecular Graphics System, Version 1.7.4.

Doerr S., Harvey M. J., Noé F., and De Fabritiis G. (2016) HTMD: High-throughput molecular dynamics for molecular discovery. J. Chem. Theory Comput. 12, 1845–1852 10.1021/acs.jctc.6b00049 PubMed DOI

Feenstra K. A., Hess B., and Berendsen H. J. C. (1999) Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comput. Chem. 20, 786–798 10.1002/(SICI)1096-987X(199906)20:8%3C786::AID-JCC5%3E3.0.CO%3B2-B PubMed DOI

Hopkins C. W., Le Grand S., Walker R. C., and Roitberg A. E. (2015) Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 11, 1864–1874 10.1021/ct5010406 PubMed DOI

Harvey M. J., and De Fabritiis G. (2009) An implementation of the smooth particle mesh Ewald method on GPU hardware. J. Chem. Theory Comput. 5, 2371–2377 10.1021/ct900275y PubMed DOI

Trott O., and Olson A. J. (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 10.1002/jcc.21334 PubMed DOI PMC

Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., and Klein M. L. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 10.1063/1.445869 DOI

Naritomi Y., and Fuchigami S. (2011) Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions. J. Chem. Phys. 134, 065101 10.1063/1.3554380 PubMed DOI

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., and Duchesnay É (2011) Scikit-learn: Machine learning in Python. J. Machine Learn. Res. 12, 2825–2830

Zhao Y. H., Abraham M. H., and Zissimos A. M. (2003) Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. J. Org. Chem. 68, 7368–7373 10.1021/jo034808o PubMed DOI

Zobrazit více v PubMed

PDB
2YXP, 1B6G, 1EDE, 2HAD, 1EDB, 2DHE, 2EDA, 2DHD, 1EDD, 2EDC, 2DHC, 1HDE

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace