Fluorescent substrates for haloalkane dehalogenases: Novel probes for mechanistic studies and protein labeling
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32346465
PubMed Central
PMC7182704
DOI
10.1016/j.csbj.2020.03.029
PII: S2001-0370(19)30566-5
Knihovny.cz E-zdroje
- Klíčová slova
- Enzyme kinetics, Fluorescent substrate, Haloalkane dehalogenase, Mechanism, Protein labeling,
- Publikační typ
- časopisecké články MeSH
Haloalkane dehalogenases are enzymes that catalyze the cleavage of carbon-halogen bonds in halogenated compounds. They serve as model enzymes for studying structure-function relationships of >100.000 members of the α/β-hydrolase superfamily. Detailed kinetic analysis of their reaction is crucial for understanding the reaction mechanism and developing novel concepts in protein engineering. Fluorescent substrates, which change their fluorescence properties during a catalytic cycle, may serve as attractive molecular probes for studying the mechanism of enzyme catalysis. In this work, we present the development of the first fluorescent substrates for this enzyme family based on coumarin and BODIPY chromophores. Steady-state and pre-steady-state kinetics with two of the most active haloalkane dehalogenases, DmmA and LinB, revealed that both fluorescent substrates provided specificity constant two orders of magnitude higher (0.14-12.6 μM-1 s-1) than previously reported representative substrates for the haloalkane dehalogenase family (0.00005-0.014 μM-1 s-1). Stopped-flow fluorescence/FRET analysis enabled for the first time monitoring of all individual reaction steps within a single experiment: (i) substrate binding, (ii-iii) two subsequent chemical steps and (iv) product release. The newly introduced fluorescent molecules are potent probes for fast steady-state kinetic profiling. In combination with rapid mixing techniques, they provide highly valuable information about individual kinetic steps and mechanism of haloalkane dehalogenases. Additionally, these molecules offer high specificity and efficiency for protein labeling and can serve as probes for studying protein hydration and dynamics as well as potential markers for cell imaging.
Zobrazit více v PubMed
Koudelakova T., Bidmanova S., Dvorak P., Pavelka A., Chaloupkova R., Prokop Z. Haloalkane dehalogenases: biotechnological applications. Biotechnol J. 2013;8:32–45. PubMed
Verschueren K.H.G., Seljée F., Rozeboom H.J., Kalk K.H., Dijkstra B.W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature. 1993;363:693–698. PubMed
Damborský J., Koca J. Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons. Protein Eng. 1999;12:989–998. PubMed
Kokkonen P., Koudelakova T., Chaloupkova R., Daniel L., Prokop Z., Damborsky J. Structure-function relationships and engineering of haloalkane dehalogenases. In: Rojo F., editor. Aerobic utilization of hydrocarbons, oils and lipids. Springer International Publishing; Cham: 2017. pp. 1–21.
Jindal G., Slanska K., Kolev V., Damborsky J., Prokop Z., Warshel A. Exploring the challenges of computational enzyme design by rebuilding the active site of a dehalogenase. Proc1 Natl Acad Sci. 2019;116:389–394. PubMed PMC
Brezovsky J., Babkova P., Degtjarik O., Fortova A., Gora A., Iermak I. Engineering a de Novo Transport Tunnel. ACS Catal. 2016;6:7597–7610.
Pavlova M., Klvana M., Prokop Z., Chaloupkova R., Banas P., Otyepka M. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol. 2009;5:727–733. PubMed
Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, Gora A, Sustr V, Klvana M, Medek P, Biedermannova L, Sochor J & Damborsky J (2012) CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 8, e1002708. PubMed PMC
Bednar D., Beerens K., Sebestova E., Bendl J., Khare S., Chaloupkova R. FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS ComputBiol. 2015;11 PubMed PMC
Amaro M., Brezovský J., Kováčová S., Sýkora J., Bednář D., Němec V. Site-specific analysis of protein hydration based on unnatural amino acid fluorescence. J Am Chem Soc. 2015;137:4988–4992. PubMed
Sykora J., Brezovsky J., Koudelakova T., Lahoda M., Fortova A., Chernovets T. Dynamics and hydration explain failed functional transformation in dehalogenase design. Nat Chem Biol. 2014;10:428. PubMed
Kokkonen P., Sykora J., Prokop Z., Ghose A., Bednar D., Amaro M. Molecular gating of an engineered enzyme captured in real time. J Am Chem Soc. 2018;140:17999–18008. PubMed
Prokop Z., Gora A., Brezovsky J., Chaloupkova R., Stepankova V., Damborsky J. Protein engineering. Handbook Wiley-VCH; 2012. Engineering of protein tunnels: keyhole-lock-key model for catalysis by the enzymes with buried active sites; pp. 421–464.
Gora A., Brezovsky J., Damborsky J. Gates of Enzymes. Chem. Rev. 2013;113:5871–5923. PubMed PMC
Prokop Z., Monincová M., Chaloupková R., Klvaňa M., Nagata Y., Janssen D.B. Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. J Biol Chem. 2003;278:45094–45100. PubMed
Schanstra J.P., Kingma J., Janssen D.B. Specificity and kinetics of haloalkane dehalogenase. J Biol Chem. 1996;271:14747–14753. PubMed
Bosma T., Pikkemaat M.G., Kingma J., Dijk J., Janssen D.B. Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a Rhodococcus Haloalkane Dehalogenase†. Biochemistry. 2003;42:8047–8053. PubMed
Turunen P., Rowan A.E., Blank K. Single-enzyme kinetics with fluorogenic substrates: lessons learnt and future directions. FEBS Lett. 2014;588:3553–3563. PubMed
Duque M., Graupner M., Stütz H., Wicher I., Zechner R., Paltauf F. New fluorogenic triacylglycerol analogs as substrates for the determination and chiral discrimination of lipase activities. J Lipid Res. 1996;37:868–876. PubMed
Basu D., Manjur J., Jin W. Determination of lipoprotein lipase activity using a novel fluorescent lipase assay. J Lipid Res. 2011;52:826–832. PubMed PMC
Sicart R., Collin M.-P., Reymond J.-L. Fluorogenic substrates for lipases, esterases, and acylases using a TIM-mechanism for signal release. Biotechnol J. 2007;2:221–231. PubMed
Hill H.D., Summer G.K., Waters M.D. An automated fluorometric assay for alkaline phosphatase using 3-O-methylfluorescein phosphate. Anal Biochem. 1968;24:9–17. PubMed
Urano Y., Kamiya M., Kanda K., Ueno T., Hirose K., Nagano T. Evolution of fluorescein as a platform for finely tunable fluorescence probes. J Am Chem Soc. 2005;127:4888–4894. PubMed
Daniel L., Buryska T., Prokop Z., Damborsky J., Brezovsky J. Mechanism-based discovery of novel substrates of haloalkane dehalogenases using in silico screening. J Chem Inf Model. 2015;55:54–62. PubMed
Slanina T., Shrestha P., Palao E., Kand D., Peterson J.A., Dutton A.S. In search of the perfect photocage: structure-reactivity relationships in meso-methyl BODIPY photoremovable protecting groups. J Am Chem Soc. 2017;139:15168–15175. PubMed
Al Anshori J., Slanina T., Palao E., Klán P. The internal heavy-atom effect on 3-phenylselanyl and 3-phenyltellanyl BODIPY derivatives studied by transient absorption spectroscopy. Photochem. Photobiol. Sci. 2016;15:250–259. PubMed
Stepankova V., Damborsky J., Chaloupkova R. Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases. Biotechnol J. 2013;8:719–729. PubMed
Hasan K., Fortova A., Koudelakova T., Chaloupkova R., Ishitsuka M., Nagata Y. Biochemical characteristics of the novel haloalkane dehalogenase DatA, isolated from the plant pathogen Agrobacterium tumefaciens C58. Appl Environ Microbiol. 2011;77:1881–1884. PubMed PMC
Prudnikova T., Mozga T., Rezacova P., Chaloupkova R., Sato Y., Nagata Y. Crystallization and preliminary X-ray analysis of a novel haloalkane dehalogenase DbeA from Bradyrhizobium elkani USDA94. Acta Crystallogr, Sect F Struct Biol Cryst Commun. 2009;65:353–356. PubMed PMC
Sato Y., Monincova M., Chaloupkova R., Prokop Z., Ohtsubo Y., Minamisawa K. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, encode haloalkane dehalogenases with novel structures and substrate specificities. Appl Environ Microbiol. 2005;71:4372–4379. PubMed PMC
Kulakova A.N., Larkin M.J., Kulakov L.A. The plasmid-located haloalkane dehalogenase gene from Rhodococcus Rhodochrous NCIMB 13064. Microbiology. 1997;143:109–115. PubMed
Keuning S., Janssen D.B., Witholt B. Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J Bacteriol. 1985;163:635–639. PubMed PMC
Gehret J.J., Gu L., Geders T.W., Brown W.C., Gerwick L., Gerwick W.H. Structure and activity of DmmA, a marine haloalkane dehalogenase: DmmA. A marine haloalkane dehalogenase. Protein Sci. 2012;21:239–248. PubMed PMC
Nagata Y., Miyauchi K., Damborsky J., Manova K., Ansorgova A., Takagi M. Purification and characterization of a haloalkane dehalogenase of a new substrate class from a gamma-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26. Appl Environ Microbiol. 1997;63:3707–3710. PubMed PMC
Buryska T., Babkova P., Vavra O., Damborsky J., Prokop Z. A haloalkane dehalogenase from a marine microbial consortium possessing exceptionally broad substrate specificity. Appl Environ Microbiol. 2017;84:e01684–e1717. PubMed PMC
Koudelakova T., Chovancova E., Brezovsky J., Monincova M., Fortova A., Jarkovsky J. Substrate specificity of haloalkane dehalogenases. Biochem. J. 2011;435:345–354. PubMed
Kokkonen P., Bednar D., Dockalova V., Prokop Z., Damborsky J. Conformational changes allow catalysis of bulky substrates by a haloalkane dehalogenase with a small and buried active site. J Biol Chem. 2018;29:11505–11512. PubMed PMC
Nagata Y., Endo R., Ito M., Ohtsubo Y., Tsuda M. Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol. 2007;76:741–752. PubMed
Chaloupková R., Sýkorová J., Prokop Z., Jesenská A., Monincová M., Pavlová M. Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. J Biol Chem. 2003;278:52622–52628. PubMed
Los G.V., Encell L.P., McDougall M.G., Hartzell D.D., Karassina N., Zimprich C. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol. 2008;3:373–382. PubMed
Grimm J.B., English B.P., Chen J., Slaughter J.P., Zhang Z., Revyakin A. General method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods. 2015;12:244–250. PubMed PMC
Shin J.-Y., Patrick B.O., Dolphin D. Self-assembly via intermolecular hydrogen-bonding between o-/m-/p-NH2 and BF2 groups on dipyrromethenes. Tetrahedron Lett. 2008;49:5515–5518.
Tutar A., Erenler R., Biellmann J.F. Synthesis of 8-substituted 4, 4-difluoro-4-bora-3a,4a-diaza-s-indacene Dyes (BODIPY) J Chem Soc Pak. 2013;35:1197–1201.
Nagata Y., Hynková K., Damborský J., Takagi M. Construction and characterization of histidine-tagged haloalkane dehalogenase (LinB) of a new substrate class from a γ-hexachlorocyclohexane-Degrading Bacterium, Sphingomonas paucimobilis UT26. Protein Expr Purif. 1999;17:299–304. PubMed
Johnson K.A., Simpson Z.B., Blom T. Global kinetic explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal Biochem. 2009;387:20–29. PubMed
Johnson K.A., Simpson Z.B., Blom T. FitSpace explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data. Anal Biochem. 2009;387:30–41. PubMed
Mechanism-Based Strategy for Optimizing HaloTag Protein Labeling