Fluorescent substrates for haloalkane dehalogenases: Novel probes for mechanistic studies and protein labeling

. 2020 ; 18 () : 922-932. [epub] 20200408

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32346465
Odkazy

PubMed 32346465
PubMed Central PMC7182704
DOI 10.1016/j.csbj.2020.03.029
PII: S2001-0370(19)30566-5
Knihovny.cz E-zdroje

Haloalkane dehalogenases are enzymes that catalyze the cleavage of carbon-halogen bonds in halogenated compounds. They serve as model enzymes for studying structure-function relationships of >100.000 members of the α/β-hydrolase superfamily. Detailed kinetic analysis of their reaction is crucial for understanding the reaction mechanism and developing novel concepts in protein engineering. Fluorescent substrates, which change their fluorescence properties during a catalytic cycle, may serve as attractive molecular probes for studying the mechanism of enzyme catalysis. In this work, we present the development of the first fluorescent substrates for this enzyme family based on coumarin and BODIPY chromophores. Steady-state and pre-steady-state kinetics with two of the most active haloalkane dehalogenases, DmmA and LinB, revealed that both fluorescent substrates provided specificity constant two orders of magnitude higher (0.14-12.6 μM-1 s-1) than previously reported representative substrates for the haloalkane dehalogenase family (0.00005-0.014 μM-1 s-1). Stopped-flow fluorescence/FRET analysis enabled for the first time monitoring of all individual reaction steps within a single experiment: (i) substrate binding, (ii-iii) two subsequent chemical steps and (iv) product release. The newly introduced fluorescent molecules are potent probes for fast steady-state kinetic profiling. In combination with rapid mixing techniques, they provide highly valuable information about individual kinetic steps and mechanism of haloalkane dehalogenases. Additionally, these molecules offer high specificity and efficiency for protein labeling and can serve as probes for studying protein hydration and dynamics as well as potential markers for cell imaging.

Zobrazit více v PubMed

Koudelakova T., Bidmanova S., Dvorak P., Pavelka A., Chaloupkova R., Prokop Z. Haloalkane dehalogenases: biotechnological applications. Biotechnol J. 2013;8:32–45. PubMed

Verschueren K.H.G., Seljée F., Rozeboom H.J., Kalk K.H., Dijkstra B.W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature. 1993;363:693–698. PubMed

Damborský J., Koca J. Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons. Protein Eng. 1999;12:989–998. PubMed

Kokkonen P., Koudelakova T., Chaloupkova R., Daniel L., Prokop Z., Damborsky J. Structure-function relationships and engineering of haloalkane dehalogenases. In: Rojo F., editor. Aerobic utilization of hydrocarbons, oils and lipids. Springer International Publishing; Cham: 2017. pp. 1–21.

Jindal G., Slanska K., Kolev V., Damborsky J., Prokop Z., Warshel A. Exploring the challenges of computational enzyme design by rebuilding the active site of a dehalogenase. Proc1 Natl Acad Sci. 2019;116:389–394. PubMed PMC

Brezovsky J., Babkova P., Degtjarik O., Fortova A., Gora A., Iermak I. Engineering a de Novo Transport Tunnel. ACS Catal. 2016;6:7597–7610.

Pavlova M., Klvana M., Prokop Z., Chaloupkova R., Banas P., Otyepka M. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol. 2009;5:727–733. PubMed

Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, Gora A, Sustr V, Klvana M, Medek P, Biedermannova L, Sochor J & Damborsky J (2012) CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 8, e1002708. PubMed PMC

Bednar D., Beerens K., Sebestova E., Bendl J., Khare S., Chaloupkova R. FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS ComputBiol. 2015;11 PubMed PMC

Amaro M., Brezovský J., Kováčová S., Sýkora J., Bednář D., Němec V. Site-specific analysis of protein hydration based on unnatural amino acid fluorescence. J Am Chem Soc. 2015;137:4988–4992. PubMed

Sykora J., Brezovsky J., Koudelakova T., Lahoda M., Fortova A., Chernovets T. Dynamics and hydration explain failed functional transformation in dehalogenase design. Nat Chem Biol. 2014;10:428. PubMed

Kokkonen P., Sykora J., Prokop Z., Ghose A., Bednar D., Amaro M. Molecular gating of an engineered enzyme captured in real time. J Am Chem Soc. 2018;140:17999–18008. PubMed

Prokop Z., Gora A., Brezovsky J., Chaloupkova R., Stepankova V., Damborsky J. Protein engineering. Handbook Wiley-VCH; 2012. Engineering of protein tunnels: keyhole-lock-key model for catalysis by the enzymes with buried active sites; pp. 421–464.

Gora A., Brezovsky J., Damborsky J. Gates of Enzymes. Chem. Rev. 2013;113:5871–5923. PubMed PMC

Prokop Z., Monincová M., Chaloupková R., Klvaňa M., Nagata Y., Janssen D.B. Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. J Biol Chem. 2003;278:45094–45100. PubMed

Schanstra J.P., Kingma J., Janssen D.B. Specificity and kinetics of haloalkane dehalogenase. J Biol Chem. 1996;271:14747–14753. PubMed

Bosma T., Pikkemaat M.G., Kingma J., Dijk J., Janssen D.B. Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a Rhodococcus Haloalkane Dehalogenase†. Biochemistry. 2003;42:8047–8053. PubMed

Turunen P., Rowan A.E., Blank K. Single-enzyme kinetics with fluorogenic substrates: lessons learnt and future directions. FEBS Lett. 2014;588:3553–3563. PubMed

Duque M., Graupner M., Stütz H., Wicher I., Zechner R., Paltauf F. New fluorogenic triacylglycerol analogs as substrates for the determination and chiral discrimination of lipase activities. J Lipid Res. 1996;37:868–876. PubMed

Basu D., Manjur J., Jin W. Determination of lipoprotein lipase activity using a novel fluorescent lipase assay. J Lipid Res. 2011;52:826–832. PubMed PMC

Sicart R., Collin M.-P., Reymond J.-L. Fluorogenic substrates for lipases, esterases, and acylases using a TIM-mechanism for signal release. Biotechnol J. 2007;2:221–231. PubMed

Hill H.D., Summer G.K., Waters M.D. An automated fluorometric assay for alkaline phosphatase using 3-O-methylfluorescein phosphate. Anal Biochem. 1968;24:9–17. PubMed

Urano Y., Kamiya M., Kanda K., Ueno T., Hirose K., Nagano T. Evolution of fluorescein as a platform for finely tunable fluorescence probes. J Am Chem Soc. 2005;127:4888–4894. PubMed

Daniel L., Buryska T., Prokop Z., Damborsky J., Brezovsky J. Mechanism-based discovery of novel substrates of haloalkane dehalogenases using in silico screening. J Chem Inf Model. 2015;55:54–62. PubMed

Slanina T., Shrestha P., Palao E., Kand D., Peterson J.A., Dutton A.S. In search of the perfect photocage: structure-reactivity relationships in meso-methyl BODIPY photoremovable protecting groups. J Am Chem Soc. 2017;139:15168–15175. PubMed

Al Anshori J., Slanina T., Palao E., Klán P. The internal heavy-atom effect on 3-phenylselanyl and 3-phenyltellanyl BODIPY derivatives studied by transient absorption spectroscopy. Photochem. Photobiol. Sci. 2016;15:250–259. PubMed

Stepankova V., Damborsky J., Chaloupkova R. Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases. Biotechnol J. 2013;8:719–729. PubMed

Hasan K., Fortova A., Koudelakova T., Chaloupkova R., Ishitsuka M., Nagata Y. Biochemical characteristics of the novel haloalkane dehalogenase DatA, isolated from the plant pathogen Agrobacterium tumefaciens C58. Appl Environ Microbiol. 2011;77:1881–1884. PubMed PMC

Prudnikova T., Mozga T., Rezacova P., Chaloupkova R., Sato Y., Nagata Y. Crystallization and preliminary X-ray analysis of a novel haloalkane dehalogenase DbeA from Bradyrhizobium elkani USDA94. Acta Crystallogr, Sect F Struct Biol Cryst Commun. 2009;65:353–356. PubMed PMC

Sato Y., Monincova M., Chaloupkova R., Prokop Z., Ohtsubo Y., Minamisawa K. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, encode haloalkane dehalogenases with novel structures and substrate specificities. Appl Environ Microbiol. 2005;71:4372–4379. PubMed PMC

Kulakova A.N., Larkin M.J., Kulakov L.A. The plasmid-located haloalkane dehalogenase gene from Rhodococcus Rhodochrous NCIMB 13064. Microbiology. 1997;143:109–115. PubMed

Keuning S., Janssen D.B., Witholt B. Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J Bacteriol. 1985;163:635–639. PubMed PMC

Gehret J.J., Gu L., Geders T.W., Brown W.C., Gerwick L., Gerwick W.H. Structure and activity of DmmA, a marine haloalkane dehalogenase: DmmA. A marine haloalkane dehalogenase. Protein Sci. 2012;21:239–248. PubMed PMC

Nagata Y., Miyauchi K., Damborsky J., Manova K., Ansorgova A., Takagi M. Purification and characterization of a haloalkane dehalogenase of a new substrate class from a gamma-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26. Appl Environ Microbiol. 1997;63:3707–3710. PubMed PMC

Buryska T., Babkova P., Vavra O., Damborsky J., Prokop Z. A haloalkane dehalogenase from a marine microbial consortium possessing exceptionally broad substrate specificity. Appl Environ Microbiol. 2017;84:e01684–e1717. PubMed PMC

Koudelakova T., Chovancova E., Brezovsky J., Monincova M., Fortova A., Jarkovsky J. Substrate specificity of haloalkane dehalogenases. Biochem. J. 2011;435:345–354. PubMed

Kokkonen P., Bednar D., Dockalova V., Prokop Z., Damborsky J. Conformational changes allow catalysis of bulky substrates by a haloalkane dehalogenase with a small and buried active site. J Biol Chem. 2018;29:11505–11512. PubMed PMC

Nagata Y., Endo R., Ito M., Ohtsubo Y., Tsuda M. Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol. 2007;76:741–752. PubMed

Chaloupková R., Sýkorová J., Prokop Z., Jesenská A., Monincová M., Pavlová M. Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. J Biol Chem. 2003;278:52622–52628. PubMed

Los G.V., Encell L.P., McDougall M.G., Hartzell D.D., Karassina N., Zimprich C. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol. 2008;3:373–382. PubMed

Grimm J.B., English B.P., Chen J., Slaughter J.P., Zhang Z., Revyakin A. General method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods. 2015;12:244–250. PubMed PMC

Shin J.-Y., Patrick B.O., Dolphin D. Self-assembly via intermolecular hydrogen-bonding between o-/m-/p-NH2 and BF2 groups on dipyrromethenes. Tetrahedron Lett. 2008;49:5515–5518.

Tutar A., Erenler R., Biellmann J.F. Synthesis of 8-substituted 4, 4-difluoro-4-bora-3a,4a-diaza-s-indacene Dyes (BODIPY) J Chem Soc Pak. 2013;35:1197–1201.

Nagata Y., Hynková K., Damborský J., Takagi M. Construction and characterization of histidine-tagged haloalkane dehalogenase (LinB) of a new substrate class from a γ-hexachlorocyclohexane-Degrading Bacterium, Sphingomonas paucimobilis UT26. Protein Expr Purif. 1999;17:299–304. PubMed

Johnson K.A., Simpson Z.B., Blom T. Global kinetic explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal Biochem. 2009;387:20–29. PubMed

Johnson K.A., Simpson Z.B., Blom T. FitSpace explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data. Anal Biochem. 2009;387:30–41. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...