Molecular Gating of an Engineered Enzyme Captured in Real Time
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30501200
DOI
10.1021/jacs.8b09848
Knihovny.cz E-zdroje
- MeSH
- biokatalýza MeSH
- hydrolasy chemie genetika MeSH
- katalytická doména MeSH
- kinetika MeSH
- konformace proteinů MeSH
- mutace MeSH
- proteinové inženýrství MeSH
- simulace molekulární dynamiky MeSH
- Sphingomonadaceae enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
Enzyme engineering tends to focus on the design of active sites for the chemical steps, while the physical steps of the catalytic cycle are often overlooked. Tight binding of a substrate in an active site is beneficial for the chemical steps, whereas good accessibility benefits substrate binding and product release. Many enzymes control the accessibility of their active sites by molecular gates. Here we analyzed the dynamics of a molecular gate artificially introduced into an access tunnel of the most efficient haloalkane dehalogenase using pre-steady-state kinetics, single-molecule fluorescence spectroscopy, and molecular dynamics. Photoinduced electron-transfer-fluorescence correlation spectroscopy (PET-FCS) has enabled real-time observation of molecular gating at the single-molecule level with rate constants ( kon = 1822 s-1, koff = 60 s-1) corresponding well with those from the pre-steady-state kinetics ( k-1 = 1100 s-1, k1 = 20 s-1). The PET-FCS technique is used here to study the conformational dynamics in a soluble enzyme, thus demonstrating an additional application for this method. Engineering dynamical molecular gates represents a widely applicable strategy for designing efficient biocatalysts.
Citace poskytuje Crossref.org
ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era
Mechanism-Based Strategy for Optimizing HaloTag Protein Labeling
Substrate inhibition by the blockage of product release and its control by tunnel engineering