Substrate inhibition by the blockage of product release and its control by tunnel engineering
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34458806
PubMed Central
PMC8341658
DOI
10.1039/d0cb00171f
PII: d0cb00171f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Substrate inhibition is the most common deviation from Michaelis-Menten kinetics, occurring in approximately 25% of known enzymes. It is generally attributed to the formation of an unproductive enzyme-substrate complex after the simultaneous binding of two or more substrate molecules to the active site. Here, we show that a single point mutation (L177W) in the haloalkane dehalogenase LinB causes strong substrate inhibition. Surprisingly, a global kinetic analysis suggested that this inhibition is caused by binding of the substrate to the enzyme-product complex. Molecular dynamics simulations clarified the details of this unusual mechanism of substrate inhibition: Markov state models indicated that the substrate prevents the exit of the halide product by direct blockage and/or restricting conformational flexibility. The contributions of three residues forming the possible substrate inhibition site (W140A, F143L and I211L) to the observed inhibition were studied by mutagenesis. An unusual synergy giving rise to high catalytic efficiency and reduced substrate inhibition was observed between residues L177W and I211L, which are located in different access tunnels of the protein. These results show that substrate inhibition can be caused by substrate binding to the enzyme-product complex and can be controlled rationally by targeted amino acid substitutions in enzyme access tunnels.
Zobrazit více v PubMed
Reed M. C. Lieb A. Nijhout H. F. BioEssays. 2010;32:422–429. doi: 10.1002/bies.200900167. PubMed DOI
Wu B. Drug Metab. Rev. 2011;43:440–456. doi: 10.3109/03602532.2011.615320. PubMed DOI
Yoshino M. Murakami K. SpringerPlus. 2015;4:292. doi: 10.1186/s40064-015-1082-8. PubMed DOI PMC
Fenton A. W. Reinhart G. D. Biochemistry. 2003;42:12676–12681. doi: 10.1021/bi0349221. PubMed DOI
Haldane J. B. S., Reprint by MIT, Cambridge, 1965, p. 84
Lin Y. Lu P. Tang C. Mei Q. Sandig G. Rodrigues A. D. Rushmore T. H. Shou M. Drug Metab. Dispos. 2001;29:368–374. PubMed
Chen C. Joo J. C. Brown G. Stolnikova E. Halavaty A. S. Savchenko A. Anderson W. F. Yakunin A. F. Appl. Environ. Microbiol. 2014;80:3992–4002. doi: 10.1128/AEM.00215-14. PubMed DOI PMC
Tidemand K. D. Peters G. H. Harris P. Stensgaard E. Christensen H. E. M. Biochemistry. 2017;56:6155–6164. doi: 10.1021/acs.biochem.7b00763. PubMed DOI
Warner J. R. Behlen L. S. Copley S. D. Biochemistry. 2008;47:3258–3265. doi: 10.1021/bi702431n. PubMed DOI
Jang E. H. Park S. A. Chi Y. M. Lee K. S. Biochem. Biophys. Res. Commun. 2015;461:487–493. doi: 10.1016/j.bbrc.2015.04.047. PubMed DOI
Heberlig G. W. Wirz M. Wang M. Boddy C. N. Org. Lett. 2014;16:5858–5861. doi: 10.1021/ol502747t. PubMed DOI
Kallio P. Patrikainen P. Belogurov G. A. Mäntsälä P. Yang K. Niemi J. Metsä-Ketelä M. Biochemistry. 2013;52:4507–4516. doi: 10.1021/bi400381s. PubMed DOI
Leroux A. E. Haanstra J. R. Bakker B. M. Krauth-Siegel R. L. J. Biol. Chem. 2013;288:23751–23764. doi: 10.1074/jbc.M113.483289. PubMed DOI PMC
Liu T. Wu Q. Liu L. Yang Q. Process Biochem. 2013;48:103–108. doi: 10.1016/j.procbio.2012.11.018. DOI
Tramonti A. Nardella C. di Salvo M. L. Barile A. Cutruzzolà F. Contestabile R. Biochemistry. 2018;57:6984–6996. doi: 10.1021/acs.biochem.8b01074. PubMed DOI
Mehrabi P. Di Pietrantonio C. Kim T. H. Sljoka A. Taverner K. Ing C. Kruglyak N. Pomès R. Pai E. F. Prosser R. S. J. Am. Chem. Soc. 2019;141:11540–11556. doi: 10.1021/jacs.9b03703. PubMed DOI
Mainprize I. L. Bean J. D. Bouwman C. Kimber M. S. Whitfield C. J. Biol. Chem. 2013;288:23064–23074. doi: 10.1074/jbc.M113.486613. PubMed DOI PMC
Reis R. A. G. Salvi F. Williams I. Gadda G. Biochemistry. 2019;58:2594–2607. doi: 10.1021/acs.biochem.9b00207. PubMed DOI
Rehm F. B. H. Jackson M. A. Geyter E. D. Yap K. Gilding E. K. Durek T. Craik D. J. Proc. Natl. Acad. Sci. U. S. A. 2019;116:7831–7836. doi: 10.1073/pnas.1901807116. PubMed DOI PMC
Kiburu I. N. LaRonde-LeBlanc N. PLoS One. 2012;7:e37371. doi: 10.1371/journal.pone.0037371. PubMed DOI PMC
Jin L. Yang K. Yao K. Zhang S. Tao H. Lee S.-T. Liu Z. Peng R. ACS Nano. 2012;6:4864–4875. doi: 10.1021/nn300217z. PubMed DOI
Jahić H. Liu C. F. Thresher J. Livchak S. Wang H. Ehmann D. E. Biochem. Pharmacol. 2012;84:654–660. doi: 10.1016/j.bcp.2012.06.017. PubMed DOI
Fang W. Du T. Raimi O. G. Hurtado-Guerrero R. Urbaniak M. D. Ibrahim A. F. M. Ferguson M. A. J. Jin C. van Aalten D. M. F. Mol. Microbiol. 2013;89:479–493. doi: 10.1111/mmi.12290. PubMed DOI PMC
Wang J. Zhu J. Min C. Wu S. BMC Biotechnol. 2014;14:40. doi: 10.1186/1472-6750-14-40. PubMed DOI PMC
Tao Y.-L. Yang D.-H. Zhang Y.-T. Zhang Y. Wang Z.-Q. Wang Y.-S. Cai S.-Q. Liu S.-L. Appl. Microbiol. Biotechnol. 2014;98:2519–2531. doi: 10.1007/s00253-013-5111-7. PubMed DOI
Sánchez-Romero J. J. Olguin L. F. Biochem. Biophys. Rep. 2015;3:161–168. PubMed PMC
Reich S. Guilligay D. Cusack S. Nucleic Acids Res. 2017;45:3353–3368. PubMed PMC
Johnson K. A., in Wiley Encyclopedia of Chemical Biology, American Cancer Society, 2008, pp. 1–8
Johnson K. A., in The Enzymes, ed. D. S. Sigman, Academic Press, 1992, vol. 20, pp. 1–61
Hu H. Luo C. Zheng Y. G. J. Biol. Chem. 2016;291:26722–26738. doi: 10.1074/jbc.M116.757625. PubMed DOI PMC
Kamlay M. T. Shore J. D. Arch. Biochem. Biophys. 1983;222:59–66. doi: 10.1016/0003-9861(83)90502-7. PubMed DOI
Wei Y. Kuzmič P. Yu R. Modi G. Hedstrom L. Biochemistry. 2016;55:5279–5288. doi: 10.1021/acs.biochem.6b00265. PubMed DOI PMC
Fromm H. J. Nelson D. R. J. Biol. Chem. 1962;237:215–220. doi: 10.1016/S0021-9258(18)81388-6. PubMed DOI
Northrop D. B. Cleland W. W. J. Biol. Chem. 1974;249:2928–2931. doi: 10.1016/S0021-9258(19)42720-8. PubMed DOI
Kokkonen P. Sykora J. Prokop Z. Ghose A. Bednar D. Amaro M. Beerens K. Bidmanova S. Slanska M. Brezovsky J. Damborsky J. Hof M. J. Am. Chem. Soc. 2018;140:17999–18008. doi: 10.1021/jacs.8b09848. PubMed DOI
Brezovsky J. Babkova P. Degtjarik O. Fortova A. Gora A. Iermak I. Rezacova P. Dvorak P. Smatanova I. K. Prokop Z. Chaloupkova R. Damborsky J. ACS Catal. 2016;6:7597–7610. doi: 10.1021/acscatal.6b02081. DOI
Rose P. W. Bi C. Bluhm W. F. Christie C. H. Dimitropoulos D. Dutta S. Green R. K. Goodsell D. S. Prlic A. Quesada M. Quinn G. B. Ramos A. G. Westbrook J. D. Young J. Zardecki C. Berman H. M. Bourne P. E. Nucleic Acids Res. 2013;41:D475–D482. doi: 10.1093/nar/gks1200. PubMed DOI PMC
Gehret J. J. Gu L. Geders T. W. Brown W. C. Gerwick L. Gerwick W. H. Sherman D. H. Smith J. L. Protein Sci. 2012;21:239–248. doi: 10.1002/pro.2009. PubMed DOI PMC
Oakley A. J. Klvana M. Otyepka M. Nagata Y. Wilce M. C. J. Damborský J. Biochemistry. 2004;43:870–878. doi: 10.1021/bi034748g. PubMed DOI
Anandakrishnan R. Aguilar B. Onufriev A. V. Nucleic Acids Res. 2012;40:W537–W541. doi: 10.1093/nar/gks375. PubMed DOI PMC
The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC
Doerr S. Harvey M. J. Noé F. De Fabritiis G. J. Chem. Theory Comput. 2016;12:1845–1852. doi: 10.1021/acs.jctc.6b00049. PubMed DOI
Leontyev I. Stuchebrukhov A. Phys. Chem. Chem. Phys. 2011;13:2613–2626. doi: 10.1039/C0CP01971B. PubMed DOI
Harvey M. J. De Fabritiis G. J. Chem. Theory Comput. 2009;5:2371–2377. doi: 10.1021/ct900275y. PubMed DOI
Harvey M. J. Giupponi G. Fabritiis G. D. J. Chem. Theory Comput. 2009;5:1632–1639. doi: 10.1021/ct9000685. PubMed DOI
Feenstra K. A. Hess B. Berendsen H. J. C. J. Comput. Chem. 1999;20:786–798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B. PubMed DOI
Hopkins C. W. Le Grand S. Walker R. C. Roitberg A. E. J. Chem. Theory Comput. 2015;11:1864–1874. doi: 10.1021/ct5010406. PubMed DOI
Naritomi Y. Fuchigami S. J. Chem. Phys. 2011;134:065101. doi: 10.1063/1.3554380. PubMed DOI
Höskuldsson A. J. Chemom. 1988;2:211–228. doi: 10.1002/cem.1180020306. DOI
Wold S., Johansson E. and Cocchi M., in 3D QSAR in Drug Design. Theory, Methods, and Applications, ESCOM Science Publisher, Leiden, 1993, pp. 523–550
Wold S. Dunn W. J. J. Chem. Inf. Comput. Sci. 1983;23:6–13. doi: 10.1021/ci00037a002. PubMed DOI
Wold S. Quant. Struct.-Act. Relat. 1991;10:191–193. doi: 10.1002/qsar.19910100302. DOI
Iwasaki I. Utsumi S. Ozawa T. Bull. Chem. Soc. Jpn. 1952;25:226. doi: 10.1246/bcsj.25.226. DOI
Todd M. J. Gomez J. Anal. Biochem. 2001;296:179–187. doi: 10.1006/abio.2001.5218. PubMed DOI
Johnson K. A. Simpson Z. B. Blom T. Anal. Biochem. 2009;387:20–29. doi: 10.1016/j.ab.2008.12.024. PubMed DOI
Verschueren K. H. G. Seljée F. Rozeboom H. J. Kalk K. H. Dijkstra B. W. Nature. 1993;363:693–698. doi: 10.1038/363693a0. PubMed DOI
Biedermannová L. Prokop Z. Gora A. Chovancová E. Kovács M. Damborsky J. Wade R. C. J. Biol. Chem. 2012;287:29062–29074. doi: 10.1074/jbc.M112.377853. PubMed DOI PMC