Substrate inhibition by the blockage of product release and its control by tunnel engineering

. 2021 Apr 01 ; 2 (2) : 645-655. [epub] 20210111

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34458806

Substrate inhibition is the most common deviation from Michaelis-Menten kinetics, occurring in approximately 25% of known enzymes. It is generally attributed to the formation of an unproductive enzyme-substrate complex after the simultaneous binding of two or more substrate molecules to the active site. Here, we show that a single point mutation (L177W) in the haloalkane dehalogenase LinB causes strong substrate inhibition. Surprisingly, a global kinetic analysis suggested that this inhibition is caused by binding of the substrate to the enzyme-product complex. Molecular dynamics simulations clarified the details of this unusual mechanism of substrate inhibition: Markov state models indicated that the substrate prevents the exit of the halide product by direct blockage and/or restricting conformational flexibility. The contributions of three residues forming the possible substrate inhibition site (W140A, F143L and I211L) to the observed inhibition were studied by mutagenesis. An unusual synergy giving rise to high catalytic efficiency and reduced substrate inhibition was observed between residues L177W and I211L, which are located in different access tunnels of the protein. These results show that substrate inhibition can be caused by substrate binding to the enzyme-product complex and can be controlled rationally by targeted amino acid substitutions in enzyme access tunnels.

Zobrazit více v PubMed

Reed M. C. Lieb A. Nijhout H. F. BioEssays. 2010;32:422–429. doi: 10.1002/bies.200900167. PubMed DOI

Wu B. Drug Metab. Rev. 2011;43:440–456. doi: 10.3109/03602532.2011.615320. PubMed DOI

Yoshino M. Murakami K. SpringerPlus. 2015;4:292. doi: 10.1186/s40064-015-1082-8. PubMed DOI PMC

Fenton A. W. Reinhart G. D. Biochemistry. 2003;42:12676–12681. doi: 10.1021/bi0349221. PubMed DOI

Haldane J. B. S., Reprint by MIT, Cambridge, 1965, p. 84

Lin Y. Lu P. Tang C. Mei Q. Sandig G. Rodrigues A. D. Rushmore T. H. Shou M. Drug Metab. Dispos. 2001;29:368–374. PubMed

Chen C. Joo J. C. Brown G. Stolnikova E. Halavaty A. S. Savchenko A. Anderson W. F. Yakunin A. F. Appl. Environ. Microbiol. 2014;80:3992–4002. doi: 10.1128/AEM.00215-14. PubMed DOI PMC

Tidemand K. D. Peters G. H. Harris P. Stensgaard E. Christensen H. E. M. Biochemistry. 2017;56:6155–6164. doi: 10.1021/acs.biochem.7b00763. PubMed DOI

Warner J. R. Behlen L. S. Copley S. D. Biochemistry. 2008;47:3258–3265. doi: 10.1021/bi702431n. PubMed DOI

Jang E. H. Park S. A. Chi Y. M. Lee K. S. Biochem. Biophys. Res. Commun. 2015;461:487–493. doi: 10.1016/j.bbrc.2015.04.047. PubMed DOI

Heberlig G. W. Wirz M. Wang M. Boddy C. N. Org. Lett. 2014;16:5858–5861. doi: 10.1021/ol502747t. PubMed DOI

Kallio P. Patrikainen P. Belogurov G. A. Mäntsälä P. Yang K. Niemi J. Metsä-Ketelä M. Biochemistry. 2013;52:4507–4516. doi: 10.1021/bi400381s. PubMed DOI

Leroux A. E. Haanstra J. R. Bakker B. M. Krauth-Siegel R. L. J. Biol. Chem. 2013;288:23751–23764. doi: 10.1074/jbc.M113.483289. PubMed DOI PMC

Liu T. Wu Q. Liu L. Yang Q. Process Biochem. 2013;48:103–108. doi: 10.1016/j.procbio.2012.11.018. DOI

Tramonti A. Nardella C. di Salvo M. L. Barile A. Cutruzzolà F. Contestabile R. Biochemistry. 2018;57:6984–6996. doi: 10.1021/acs.biochem.8b01074. PubMed DOI

Mehrabi P. Di Pietrantonio C. Kim T. H. Sljoka A. Taverner K. Ing C. Kruglyak N. Pomès R. Pai E. F. Prosser R. S. J. Am. Chem. Soc. 2019;141:11540–11556. doi: 10.1021/jacs.9b03703. PubMed DOI

Mainprize I. L. Bean J. D. Bouwman C. Kimber M. S. Whitfield C. J. Biol. Chem. 2013;288:23064–23074. doi: 10.1074/jbc.M113.486613. PubMed DOI PMC

Reis R. A. G. Salvi F. Williams I. Gadda G. Biochemistry. 2019;58:2594–2607. doi: 10.1021/acs.biochem.9b00207. PubMed DOI

Rehm F. B. H. Jackson M. A. Geyter E. D. Yap K. Gilding E. K. Durek T. Craik D. J. Proc. Natl. Acad. Sci. U. S. A. 2019;116:7831–7836. doi: 10.1073/pnas.1901807116. PubMed DOI PMC

Kiburu I. N. LaRonde-LeBlanc N. PLoS One. 2012;7:e37371. doi: 10.1371/journal.pone.0037371. PubMed DOI PMC

Jin L. Yang K. Yao K. Zhang S. Tao H. Lee S.-T. Liu Z. Peng R. ACS Nano. 2012;6:4864–4875. doi: 10.1021/nn300217z. PubMed DOI

Jahić H. Liu C. F. Thresher J. Livchak S. Wang H. Ehmann D. E. Biochem. Pharmacol. 2012;84:654–660. doi: 10.1016/j.bcp.2012.06.017. PubMed DOI

Fang W. Du T. Raimi O. G. Hurtado-Guerrero R. Urbaniak M. D. Ibrahim A. F. M. Ferguson M. A. J. Jin C. van Aalten D. M. F. Mol. Microbiol. 2013;89:479–493. doi: 10.1111/mmi.12290. PubMed DOI PMC

Wang J. Zhu J. Min C. Wu S. BMC Biotechnol. 2014;14:40. doi: 10.1186/1472-6750-14-40. PubMed DOI PMC

Tao Y.-L. Yang D.-H. Zhang Y.-T. Zhang Y. Wang Z.-Q. Wang Y.-S. Cai S.-Q. Liu S.-L. Appl. Microbiol. Biotechnol. 2014;98:2519–2531. doi: 10.1007/s00253-013-5111-7. PubMed DOI

Sánchez-Romero J. J. Olguin L. F. Biochem. Biophys. Rep. 2015;3:161–168. PubMed PMC

Reich S. Guilligay D. Cusack S. Nucleic Acids Res. 2017;45:3353–3368. PubMed PMC

Johnson K. A., in Wiley Encyclopedia of Chemical Biology, American Cancer Society, 2008, pp. 1–8

Johnson K. A., in The Enzymes, ed. D. S. Sigman, Academic Press, 1992, vol. 20, pp. 1–61

Hu H. Luo C. Zheng Y. G. J. Biol. Chem. 2016;291:26722–26738. doi: 10.1074/jbc.M116.757625. PubMed DOI PMC

Kamlay M. T. Shore J. D. Arch. Biochem. Biophys. 1983;222:59–66. doi: 10.1016/0003-9861(83)90502-7. PubMed DOI

Wei Y. Kuzmič P. Yu R. Modi G. Hedstrom L. Biochemistry. 2016;55:5279–5288. doi: 10.1021/acs.biochem.6b00265. PubMed DOI PMC

Fromm H. J. Nelson D. R. J. Biol. Chem. 1962;237:215–220. doi: 10.1016/S0021-9258(18)81388-6. PubMed DOI

Northrop D. B. Cleland W. W. J. Biol. Chem. 1974;249:2928–2931. doi: 10.1016/S0021-9258(19)42720-8. PubMed DOI

Kokkonen P. Sykora J. Prokop Z. Ghose A. Bednar D. Amaro M. Beerens K. Bidmanova S. Slanska M. Brezovsky J. Damborsky J. Hof M. J. Am. Chem. Soc. 2018;140:17999–18008. doi: 10.1021/jacs.8b09848. PubMed DOI

Brezovsky J. Babkova P. Degtjarik O. Fortova A. Gora A. Iermak I. Rezacova P. Dvorak P. Smatanova I. K. Prokop Z. Chaloupkova R. Damborsky J. ACS Catal. 2016;6:7597–7610. doi: 10.1021/acscatal.6b02081. DOI

Rose P. W. Bi C. Bluhm W. F. Christie C. H. Dimitropoulos D. Dutta S. Green R. K. Goodsell D. S. Prlic A. Quesada M. Quinn G. B. Ramos A. G. Westbrook J. D. Young J. Zardecki C. Berman H. M. Bourne P. E. Nucleic Acids Res. 2013;41:D475–D482. doi: 10.1093/nar/gks1200. PubMed DOI PMC

Gehret J. J. Gu L. Geders T. W. Brown W. C. Gerwick L. Gerwick W. H. Sherman D. H. Smith J. L. Protein Sci. 2012;21:239–248. doi: 10.1002/pro.2009. PubMed DOI PMC

Oakley A. J. Klvana M. Otyepka M. Nagata Y. Wilce M. C. J. Damborský J. Biochemistry. 2004;43:870–878. doi: 10.1021/bi034748g. PubMed DOI

Anandakrishnan R. Aguilar B. Onufriev A. V. Nucleic Acids Res. 2012;40:W537–W541. doi: 10.1093/nar/gks375. PubMed DOI PMC

The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC

Doerr S. Harvey M. J. Noé F. De Fabritiis G. J. Chem. Theory Comput. 2016;12:1845–1852. doi: 10.1021/acs.jctc.6b00049. PubMed DOI

Leontyev I. Stuchebrukhov A. Phys. Chem. Chem. Phys. 2011;13:2613–2626. doi: 10.1039/C0CP01971B. PubMed DOI

Harvey M. J. De Fabritiis G. J. Chem. Theory Comput. 2009;5:2371–2377. doi: 10.1021/ct900275y. PubMed DOI

Harvey M. J. Giupponi G. Fabritiis G. D. J. Chem. Theory Comput. 2009;5:1632–1639. doi: 10.1021/ct9000685. PubMed DOI

Feenstra K. A. Hess B. Berendsen H. J. C. J. Comput. Chem. 1999;20:786–798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B. PubMed DOI

Hopkins C. W. Le Grand S. Walker R. C. Roitberg A. E. J. Chem. Theory Comput. 2015;11:1864–1874. doi: 10.1021/ct5010406. PubMed DOI

Naritomi Y. Fuchigami S. J. Chem. Phys. 2011;134:065101. doi: 10.1063/1.3554380. PubMed DOI

Höskuldsson A. J. Chemom. 1988;2:211–228. doi: 10.1002/cem.1180020306. DOI

Wold S., Johansson E. and Cocchi M., in 3D QSAR in Drug Design. Theory, Methods, and Applications, ESCOM Science Publisher, Leiden, 1993, pp. 523–550

Wold S. Dunn W. J. J. Chem. Inf. Comput. Sci. 1983;23:6–13. doi: 10.1021/ci00037a002. PubMed DOI

Wold S. Quant. Struct.-Act. Relat. 1991;10:191–193. doi: 10.1002/qsar.19910100302. DOI

Iwasaki I. Utsumi S. Ozawa T. Bull. Chem. Soc. Jpn. 1952;25:226. doi: 10.1246/bcsj.25.226. DOI

Todd M. J. Gomez J. Anal. Biochem. 2001;296:179–187. doi: 10.1006/abio.2001.5218. PubMed DOI

Johnson K. A. Simpson Z. B. Blom T. Anal. Biochem. 2009;387:20–29. doi: 10.1016/j.ab.2008.12.024. PubMed DOI

Verschueren K. H. G. Seljée F. Rozeboom H. J. Kalk K. H. Dijkstra B. W. Nature. 1993;363:693–698. doi: 10.1038/363693a0. PubMed DOI

Biedermannová L. Prokop Z. Gora A. Chovancová E. Kovács M. Damborsky J. Wade R. C. J. Biol. Chem. 2012;287:29062–29074. doi: 10.1074/jbc.M112.377853. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...