Azobenzene-Based Photoswitchable Substrates for Advanced Mechanistic Studies of Model Haloalkane Dehalogenase Enzyme Family
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39114093
PubMed Central
PMC11301625
DOI
10.1021/acscatal.4c03503
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The engineering of efficient enzymes for large-scale production of industrially relevant compounds is a challenging task. Utilizing rational protein design, which relies on a comprehensive understanding of mechanistic information, holds significant promise for achieving success in this endeavor. Pre-steady-state kinetic measurements, obtained either through fast-mixing techniques or photoswitchable substrates, provide crucial mechanistic insights. The latter approach not only furnishes mechanistic clarity but also affords real-time structural elucidation of reaction intermediates via time-resolved femtosecond crystallography. Unfortunately, only a limited number of such valuable mechanistic probes are available. To address this gap, we applied a multidisciplinary approach, including computational analysis, chemical synthesis, physicochemical property screening, and enzyme kinetics to identify promising candidates for photoswitchable probes. We demonstrate the approach by designing an azobenzene-based photoswitchable substrate tailored for haloalkane dehalogenases, a prototypic class of enzymes pivotal in developing computational tools for rational protein design. The probe was subjected to steady-state and pre-steady-state kinetic analysis, which revealed new insights about the catalytic behavior of the model biocatalysts. We employed laser-triggered Z-to-E azobenzene photoswitching to generate the productive isomer in situ, opening avenues for advanced mechanistic studies using time-resolved femtosecond crystallography. Our results not only pave the way for the mechanistic understanding of this model enzyme family, incorporating both kinetic and structural dimensions, but also propose a systematic approach to the rational design of photoswitchable enzymatic substrates.
Department of Chemistry Faculty of Science Masaryk University Brno 625 00 Czech Republic
International Clinical Research Centre St Ann's Hospital Brno 625 00 Czech Republic
RECETOX Faculty of Science Masaryk University Brno 625 00 Czech Republic
Zobrazit více v PubMed
Sheldon R. A.; Woodley J. M. Role of Biocatalysis in Sustainable Chemistry. Chem. Rev. 2018, 118, 801–838. 10.1021/acs.chemrev.7b00203. PubMed DOI
Alcántara A. R.; et al. Biocatalysis as Key to Sustainable Industrial Chemistry. ChemSusChem 2022, 15, e20210270910.1002/cssc.202102709. PubMed DOI
Truppo M. D. Biocatalysis in the Pharmaceutical Industry: The Need for Speed. ACS Med. Chem. Lett. 2017, 8, 476–480. 10.1021/acsmedchemlett.7b00114. PubMed DOI PMC
Lamba D.; Pesaresi A. Kinetic Modeling of Time-Dependent Enzyme Inhibition by Pre-Steady-State Analysis of Progress Curves: The Case Study of the Anti-Alzheimer’s Drug Galantamine. International Journal of Molecular Sciences 2022, 23, 5072.10.3390/ijms23095072. PubMed DOI PMC
Srinivasan B. A guide to the Michaelis–Menten equation: steady state and beyond. FEBS Journal 2022, 289, 6086–6098. 10.1111/febs.16124. PubMed DOI
Kokkonen P.; et al. The impact of tunnel mutations on enzymatic catalysis depends on the tunnel-substrate complementarity and the rate-limiting step. Comput. Struct Biotechnol J. 2020, 18, 805–813. 10.1016/j.csbj.2020.03.017. PubMed DOI PMC
Bloemink M. J.; Hsu K. H.; Geeves M. A.; Bernstein S. I. Alternative N-terminal regions of Drosophila myosin heavy chain II regulate communication of the purine binding loop with the essential light chain. J. Biol. Chem. 2020, 295, 14522–14535. 10.1074/jbc.RA120.014684. PubMed DOI PMC
Bozovic O.; Jankovic B.; Hamm P. Using azobenzene photocontrol to set proteins in motion. Nat. Rev. Chem. 2022, 6, 112–124. 10.1038/s41570-021-00338-6. PubMed DOI
Cataldi E.; et al. Amber Light Control of Peptide Secondary Structure by a Perfluoroaromatic Azobenzene Photoswitch. ChemBioChem. 2023, 24, e20220057010.1002/cbic.202200570. PubMed DOI
Cheong H.; et al. Spatiotemporal-Controlled Reporter for Cell-Surface Proteolytic Enzyme Activity Visualization. Chembiochem 2019, 20, 561–567. 10.1002/cbic.201800445. PubMed DOI
Neri S.; Garcia Martin S.; Pezzato C.; Prins L. J. Photoswitchable Catalysis by a Nanozyme Mediated by a Light-Sensitive Cofactor. J. Am. Chem. Soc. 2017, 139, 1794–1797. 10.1021/jacs.6b12932. PubMed DOI
Liu Y.; et al. Construction of Smart Glutathione S-Transferase via Remote Optically Controlled Supramolecular Switches. ACS Catal. 2017, 7, 6979–6983. 10.1021/acscatal.7b02821. DOI
Klippenstein V.; Hoppmann C.; Ye S.; Wang L.; Paoletti P. Optocontrol of glutamate receptor activity by single side-chain photoisomerization. eLife 2017, 6, e2580810.7554/eLife.25808. PubMed DOI PMC
Haque S.; Kikukawa T.; Tamaoki N. Photoisomerization of azobenzene units drives the photochemical reaction cycles of proteorhodopsin and bacteriorhodopsin analogues. Org. Biomol. Chem. 2020, 18, 6312–6327. 10.1039/D0OB01486A. PubMed DOI
Heyes D. J.; et al. Photochemical Mechanism of Light-Driven Fatty Acid Photodecarboxylase. ACS Catal. 2020, 10, 6691–6696. 10.1021/acscatal.0c01684. PubMed DOI PMC
Watari M.; et al. Spectroscopic study of the transmembrane domain of a rhodopsin-phosphodiesterase fusion protein from a unicellular eukaryote. J. Biol. Chem. 2019, 294, 3432–3443. 10.1074/jbc.RA118.006277. PubMed DOI PMC
Nienhaus K.; Nickel E.; Nienhaus G. U. Substrate binding in human indoleamine 2,3-dioxygenase 1: A spectroscopic analysis. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2017, 1865, 453–463. 10.1016/j.bbapap.2017.02.008. PubMed DOI
Koudelakova T.; et al. Haloalkane dehalogenases: Biotechnological applications. Biotechnology Journal 2013, 8, 32–45. 10.1002/biot.201100486. PubMed DOI
Sykora J.; et al. Dynamics and hydration explain failed functional transformation in dehalogenase design. Nat. Chem. Biol. 2014, 10, 428–430. 10.1038/nchembio.1502. PubMed DOI
Kokkonen P.; et al. Molecular Gating of an Engineered Enzyme Captured in Real Time. J. Am. Chem. Soc. 2018, 140, 17999–18008. 10.1021/jacs.8b09848. PubMed DOI
Stourac J.; et al. Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res. 2019, 47, W414–W422. 10.1093/nar/gkz378. PubMed DOI PMC
Musil M.; et al. FireProt: web server for automated design of thermostable proteins. Nucleic Acids Res. 2017, 45, W393–W399. 10.1093/nar/gkx285. PubMed DOI PMC
Verschueren K. H.; Seljée F.; Rozeboom H. J.; Kalk K. H.; Dijkstra B. W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 1993, 363, 693–698. 10.1038/363693a0. PubMed DOI
Prokop Z.; et al. Catalytic mechanism of the maloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. J. Biol. Chem. 2003, 278, 45094–45100. 10.1074/jbc.M307056200. PubMed DOI
Hanwell M. D.; et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform 2012, 4, 17.10.1186/1758-2946-4-17. PubMed DOI PMC
Berman H. M.; et al. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. 10.1093/nar/28.1.235. PubMed DOI PMC
Sanner M. F. Python: a programming language for software integration and development. J. Mol. Graph Model 1999, 17, 57–61. PubMed
Trott O.; Olson A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455–461. 10.1002/jcc.21334. PubMed DOI PMC
Daniel L.; Buryska T.; Prokop Z.; Damborsky J.; Brezovsky J. Mechanism-Based Discovery of Novel Substrates of Haloalkane Dehalogenases Using in Silico Screening. J. Chem. Inf. Model. 2015, 55, 54–62. 10.1021/ci500486y. PubMed DOI
PyMOL . The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. (2014).
Hur S.; Kahn K.; Bruice T. C. Comparison of formation of reactive conformers for the SN2 displacements by CH3CO2- in water and by Asp104-CO2- in a haloalkane dehalogenase. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 2215–2219. 10.1073/pnas.242721799. PubMed DOI PMC
Chovancova E.; et al. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLOS Computational Biology 2012, 8, e100270810.1371/journal.pcbi.1002708. PubMed DOI PMC
Buryska T.; Babkova P.; Vavra O.; Damborsky J.; Prokop Z. A Haloalkane Dehalogenase from a Marine Microbial Consortium Possessing Exceptionally Broad Substrate Specificity. Appl. Environ. Microbiol. 2018, 84, e01684-1710.1128/AEM.01684-17. PubMed DOI PMC
Todd M. J.; Gomez J. Enzyme kinetics determined using calorimetry: a general assay for enzyme activity?. Anal. Biochem. 2001, 296, 179–187. 10.1006/abio.2001.5218. PubMed DOI
Johnson K. A.; Simpson Z. B.; Blom T. Global kinetic explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal. Biochem. 2009, 387, 20–29. 10.1016/j.ab.2008.12.024. PubMed DOI
Johnson K. A.; Simpson Z. B.; Blom T. FitSpace Explorer: An algorithm to evaluate multidimensional parameter space in fitting kinetic data. Anal. Biochem. 2009, 387, 30–41. 10.1016/j.ab.2008.12.025. PubMed DOI
Kondo M.; Takizawa S.; Jiang Y.; Sasai H. Room-Temperature, Metal-Free, and One-Pot Preparation of 2H-Indazoles through a Mills Reaction and Cyclization Sequence. Chem. - Eur. J. 2019, 25, 9866–9869. 10.1002/chem.201902242. PubMed DOI
Johnson K. A. New standards for collecting and fitting steady state kinetic data. Beilstein J. Org. Chem. 2019, 15, 16–29. 10.3762/bjoc.15.2. PubMed DOI PMC
Dockalova V.; et al. Fluorescent substrates for haloalkane dehalogenases: Novel probes for mechanistic studies and protein labeling. Computational and Structural Biotechnology Journal 2020, 18, 922–932. 10.1016/j.csbj.2020.03.029. PubMed DOI PMC
Schanstra J. P.; Janssen D. B. Kinetics of halide release of haloalkane dehalogenase: evidence for a slow conformational change. Biochemistry 1996, 35, 5624–5632. 10.1021/bi952904g. PubMed DOI
Biedermannová L.; et al. A Single Mutation in a Tunnel to the Active Site Changes the Mechanism and Kinetics of Product Release in Haloalkane Dehalogenase LinB *. J. Biol. Chem. 2012, 287, 29062–29074. 10.1074/jbc.M112.377853. PubMed DOI PMC
Schanstra J. P.; Kingma J.; Janssen D. B. Specificity and kinetics of haloalkane dehalogenase. J. Biol. Chem. 1996, 271, 14747–14753. 10.1074/jbc.271.25.14747. PubMed DOI
Babkova P.; et al. Structures of hyperstable ancestral haloalkane dehalogenases show restricted conformational dynamics. Computational and Structural Biotechnology Journal 2020, 18, 1497–1508. 10.1016/j.csbj.2020.06.021. PubMed DOI PMC
Kokkonen P.; Bednar D.; Dockalova V.; Prokop Z.; Damborsky J. Conformational changes allow processing of bulky substrates by a haloalkane dehalogenase with a small and buried active site. J. Biol. Chem. 2018, 293, 11505–11512. 10.1074/jbc.RA117.000328. PubMed DOI PMC
Hess D.; et al. Exploring mechanism of enzyme catalysis by on-chip transient kinetics coupled with global data analysis and molecular modeling. Chem. 2021, 7, 1066–1079. 10.1016/j.chempr.2021.02.011. DOI
Bosma T.; Pikkemaat M. G.; Kingma J.; Dijk J.; Janssen D. B. Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a rhodococcus haloalkane dehalogenase. Biochemistry 2003, 42, 8047–8053. 10.1021/bi026907m. PubMed DOI
Orville A. M. Recent results in time resolved serial femtosecond crystallography at XFELs. Curr. Opin Struct Biol. 2020, 65, 193–208. 10.1016/j.sbi.2020.08.011. PubMed DOI
Schmidt M. Time-Resolved Macromolecular Crystallography at Pulsed X-ray Sources. Int. J. Mol. Sci. 2019, 20, 1401.10.3390/ijms20061401. PubMed DOI PMC
Time-resolved serial crystallography to reveal protein structural changes: Trends in Biochemical Sciences. https://www.cell.com/trends/biochemical-sciences/fulltext/S0968-0004(23)00250-5. PubMed
Damborsky J., Chaloupkova R., Pavlova M., Chovancova E., Brezovsky J.. Structure–Function Relationships and Engineering of Haloalkane Dehalogenases. in Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis K. N.) 1081–1098 (Springer: Berlin, Heidelberg, 2010). doi:10.1007/978-3-540-77587-4_76. DOI
Kokkonen P.et al.Structure-Function Relationships and Engineering of Haloalkane Dehalogenases. in Aerobic Utilization of Hydrocarbons, Oils and Lipids (ed. Rojo F..) 1–21 (Springer International Publishing: Cham, 2017). doi:10.1007/978-3-319-39782-5_15-1. DOI