FireProt: web server for automated design of thermostable proteins
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28449074
PubMed Central
PMC5570187
DOI
10.1093/nar/gkx285
PII: 3760185
Knihovny.cz E-zdroje
- MeSH
- Bacteria chemie enzymologie MeSH
- databáze proteinů MeSH
- hydrolasy chemie genetika metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- internet MeSH
- konformace proteinů, alfa-helix MeSH
- konformace proteinů, beta-řetězec MeSH
- lidé MeSH
- molekulární modely MeSH
- mutace * MeSH
- proteinové inženýrství metody MeSH
- stabilita proteinů MeSH
- termodynamika MeSH
- uživatelské rozhraní počítače * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
There is a continuous interest in increasing proteins stability to enhance their usability in numerous biomedical and biotechnological applications. A number of in silico tools for the prediction of the effect of mutations on protein stability have been developed recently. However, only single-point mutations with a small effect on protein stability are typically predicted with the existing tools and have to be followed by laborious protein expression, purification, and characterization. Here, we present FireProt, a web server for the automated design of multiple-point thermostable mutant proteins that combines structural and evolutionary information in its calculation core. FireProt utilizes sixteen tools and three protein engineering strategies for making reliable protein designs. The server is complemented with interactive, easy-to-use interface that allows users to directly analyze and optionally modify designed thermostable mutants. FireProt is freely available at http://loschmidt.chemi.muni.cz/fireprot.
Centre of Excellence IT4Innovations Technical University Ostrava Ostrava
International Centre for Clinical Research St Anne's University Hospital Brno Brno Czech Republic
Loschmidt Laboratories Department of Experimental Biology Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Modarres H.P., Mofrad M.R., Sanati-Nezhad A.. Protein thermostability engineering. RSC Adv. 2016; 6:115252–115270.
Ferdjani S., Ionita M., Roy B., Dion M., Djeghaba Z., Rabiller C., Tellier C.. Correlation between thermostability and stability of glycosidases in ionic liquid. Biotechnol. Lett. 2011; 33:1215–1219. PubMed
Wijma H.J., Floor R.J., Janssen D.B.. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr. Opin. Struct. Biol. 2013; 23:588–594. PubMed
Gao D., Narasimhan D.L., Macdonald J., Brim R., Ko M.C., Landry D.W., Woods J.H., Sunahara R.K., Zhan C.G.. Thermostable variants of cocaine esterase for long-time protection against cocaine toxicity. Mol. Pharmacol. 2009; 75:318–323. PubMed PMC
Polizzi K.M., Bommarius A.S., Broering J.M., Chaparro-Riggers J.F.. Stability of biocatalysts. Curr. Opin. Chem. Biol. 2007; 11:220–225. PubMed
Gray K.A., Richardson T.H., Kretz K., Short J.M., Bartnek F., Knowles R., Kan L., Swanson P.E., Robertson D.E.. Rapid evolution of reversible denaturation and elevated melting temperature in a microbial haloalkane dehalogenase. Adv. Synth. Catal. 2001; 343:607–617.
Folkman L., Stantic B., Sattar A., Zhou Y.. EASE-MM: sequence-based prediction of mutation-induced stability changes with feature-based multiple models. J. Mol. Biol. 2016; 428:1394–1405. PubMed
Capriotti E., Fariselli P., Casadio R.. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005; W306–W310. PubMed PMC
Pires D.E., Ascher D.B., Blundell T.L.. mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics. 2014; 30:335–342. PubMed PMC
Kellogg E.H., Leaver-Fay A., Baker D.. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins. 2011; 79:830–838. PubMed PMC
Yin S., Ding F., Dokholyan N.V.. Modeling backbone flexibility improves protein stability estimation. Structure. 2007; 15:1567–1576. PubMed
Dehouck Y., Grosfils A., Folch B., Gilis D., Bogaerts P., Rooman M.. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics. 2009; 25:2537–2543. PubMed
Guerois R., Nielsen J.E., Serrano L.. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 2002; 320:369–387. PubMed
Gumulya Y., Reetz M.T.. Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways. ChemBioChem. 2011; 12:2502–2510. PubMed
Bommarius A.S., Paye M.F.. Stabilizing biocatalysts. Chem. Soc. Rev. 2013; 42:6534–6565. PubMed
Bednar D., Beerens K., Sebestova E., Bendl J., Khare S., Chaloupkova R., Prokop Z., Brezovsky J., Baker D., Damborsky J.. FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS Comput. Biol. 2015; 11:e1004556. PubMed PMC
Goldenzweig A., Goldsmith M., Hill S.E., Gertman O., Laurino P., Ashani Y., Dym O., Unger T., Albeck S., Prilusky J. et al. . Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol. Cell. 2016; 63:337–346. PubMed PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L.. BLAST+: architecture and applications. BMC Bioinformatics. 2009; 10:421. PubMed PMC
Suzek B.E., Wang Y., Huang H., McGarvey P.B., Wu C.H.. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 2015; 31:926–932. PubMed PMC
Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26:2460–2461. PubMed
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Soding J. et al. . Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 2011; 7:539. PubMed PMC
Capra J.A., Singh M.. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007; 23:1875–1882. PubMed
Kass I., Horovitz A.. Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins. 2002; 48:611–617. PubMed
Korber B.T.M., Farber R.M., Wolpert D.H., Lapedes A.S.. Covariation of mutations in the V3 loop of human immunodeficiency virus type 1 envelope protein: an information theoretic analysis. Proc. Natl. Acad. Sci. U.S.A. 1993; 90:7176–7180. PubMed PMC
Lee B.C., Kim D.. A new method for revealing correlated mutations under the structural and functional constraints in proteins. Bioinformatics. 2009; 25:2506–2513. PubMed
Weigt M., White R.A., Szurmant H., Hoch J.A., Hwa T.. Identification of direct residue contacts in protein–protein interaction by message passing. Proc. Natl. Acad. Sci. U.S.A. 2008; 106:67–72. PubMed PMC
Lockless S.W., Ranganathan R.. Evolutionarily conserved pathways of energetic connectivity in protein families. Science. 1999; 286:295–299. PubMed
Dekker J.P., Fodor A., Aldrich R.W., Yellen G.. A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics. 2004; 20:1565–1572. PubMed
Valencia A. Multiple sequence alignments as tools for protein structure and function prediction. Compar. Funct. Genomics. 2003; 4:424–427. PubMed PMC
Benner S.A., Gerloff D.. Patterns of divergence in homologous proteins as indicators of secondary and tertiary structure: a prediction of the structure of the catalytic domain of protein kinases. Adv. Enzyme Regul. 1991; 31:121–181. PubMed
Brenner S. The molecular evolution of genes and proteins: a tale of two serines. Nature. 1988; 334:528–530. PubMed
Cooperman B.S., Baykov A.A., Lahti R.. Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Trends Biochem. Sci. 1992; 17:262–266. PubMed
Howell N. Evolutionary conservation of protein regions in the protonmotive cytochrome b and their possible roles in redox catalysis. J. Mol. Evol. 1989; 29:157–169. PubMed
Gobel U., Sander C., Schneider R., Valencia A.. Correlated mutations and residue contacts in proteins. Proteins. 1994; 18:309–317. PubMed
Neher E. How frequent are correlated changes in families of protein sequences. Proc. Natl. Acad. Sci. U.S.A. 1994; 91:98–102. PubMed PMC
Taylor W.R., Hatrick K.. Compensating changes in protein multiple sequence alignments. Protein Eng. 1994; 7:341–348. PubMed
Bava K.A., Gromiha M.M., Uedaira H., Kitajima K., Sarai A.. ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res. 2004; 32:D120–D121. PubMed PMC
Pucci F., Bourgeas R., Rooman M.. Predicting protein thermal stability changes upon point mutations using statistical potentials: introducing HoTMuSiC. Scientific Rep. 2016; 6:23257. PubMed PMC
Amin N., Liu A.D., Ramer S., Aehle W., Meijer D., Metin M., Wong S., Gualfetti P., Schellenberger V.. Construction of stabilized proteins by combinatorial consensus mutagenesis. Protein Eng. Des. Select. 2004; 17:787–793. PubMed
Lehmann M., Loch C., Middendorf A., Studer D., Lassen S.F., Pasamontes L., van Loon A.P., Wyss M.. The consensus concept for thermostability engineering of proteins: further proof of concept. Protein Eng. 2002; 15:403–411. PubMed
Pey A.L., Rodriguez-Larrea D., Bomke S., Dammers S., Godoy-Ruiz R., Garcia-Mira M.M., Sanchez-Ruiz J.M.. Engineering proteins with tunable thermodynamic and kinetic stabilities. Proteins. 2008; 71:165–174. PubMed
Sullivan B.J., Nguyen T., Durani V., Mathur D., Rojas S., Thomas M., Syu T., Magliery T.J.. Stabilizing proteins from sequence statistics: the interplay of conservation and correlation in triosephosphate isomerase stability. J. Mol. Biol. 2012; 420:384–399. PubMed PMC
Bendl J., Stourac J., Sebestova E., Vavra O., Musil M., Brezovsky J., Damborsky J.. HotSpot wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering. Nucleic Acids Res. 2016; 44:W479–W487. PubMed PMC
Floor R.J.1, Wijma H.J., Colpa D.I., Ramos-Silva A., Jekel P.A., Szymański W., Feringa B.L., Marrink S.J., Janssen D.B.. Computational library design for increasing haloalkane dehalogenase stability. ChemBioChem. 2014; 15:1660–1672. PubMed
FireProt 2.0: web-based platform for the fully automated design of thermostable proteins
Machine Learning-Guided Protein Engineering
FireProtDB: database of manually curated protein stability data
Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst