Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst

. 2020 Sep 11 ; 11 (41) : 11162-11178. [epub] 20200911

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34094357

Computational design of protein catalysts with enhanced stabilities for use in research and enzyme technologies is a challenging task. Using force-field calculations and phylogenetic analysis, we previously designed the haloalkane dehalogenase DhaA115 which contains 11 mutations that confer upon it outstanding thermostability (T m = 73.5 °C; ΔT m > 23 °C). An understanding of the structural basis of this hyperstabilization is required in order to develop computer algorithms and predictive tools. Here, we report X-ray structures of DhaA115 at 1.55 Å and 1.6 Å resolutions and their molecular dynamics trajectories, which unravel the intricate network of interactions that reinforce the αβα-sandwich architecture. Unexpectedly, mutations toward bulky aromatic amino acids at the protein surface triggered long-distance (∼27 Å) backbone changes due to cooperative effects. These cooperative interactions produced an unprecedented double-lock system that: (i) induced backbone changes, (ii) closed the molecular gates to the active site, (iii) reduced the volumes of the main and slot access tunnels, and (iv) occluded the active site. Despite these spatial restrictions, experimental tracing of the access tunnels using krypton derivative crystals demonstrates that transport of ligands is still effective. Our findings highlight key thermostabilization effects and provide a structural basis for designing new thermostable protein catalysts.

Zobrazit více v PubMed

Robinson P. K. Essays Biochem. 2015;59:1–41. PubMed PMC

Singh R. Kumar M. Mittal A. Mehta P. K. 3 Biotech. 2016;6:174. PubMed PMC

Yeoman C. J., Han Y., Dodd D., Schroeder C. M., Mackie R. I. and Cann I. K. O., Advances in applied microbiology, Elsevier, 2010, vol. 70, pp. 1–55 PubMed PMC

Kazlauskas R. Chem. Soc. Rev. 2018;47:9026–9045. PubMed

Pace C. N. Scholtz J. M. Grimsley G. R. FEBS Lett. 2014;588:2177–2184. PubMed PMC

Strickler S. S. Gribenko A. V. Gribenko A. V. Keiffer T. R. Tomlinson J. Reihle T. Loladze V. V. Makhatadze G. I. Biochemistry. 2006;45:2761–2766. PubMed

Pace C. N. Fu H. Fryar K. L. Landua J. Trevino S. R. Shirley B. A. Hendricks M. M. Iimura S. Gajiwala K. Scholtz J. M. Grimsley G. R. J. Mol. Biol. 2011;408:514–528. PubMed PMC

Damborsky J. Rorije E. Jesenska A. Nagata Y. Klopman G. Peijnenburg W. J. G. M. Environ. Toxicol. Chem. 2001;20:2681–2689. PubMed

Damborsky J., Chaloupkova R., Pavlova M., Chovancova E. and Brezovsky J., in Handbook of Hydrocarbon and Lipid Microbiology, Springer, Berlin, Heidelberg, 2010, pp. 1081–1098

Petrek M. Otyepka M. Banas P. Kosinova P. Koča J. Damborsky J. BMC Bioinf. 2006;7:316. PubMed PMC

Chaloupkova R. Sykorova J. Prokop Z. Jesenska A. Monincova M. Pavlova M. Tsuda M. Nagata Y. Damborska J. J. Biol. Chem. 2003;278:52622–52628. PubMed

Pavlova M. Klvana M. Prokop Z. Chaloupkova R. Banas P. Otyepka M. Wade R. C. Tsuda M. Nagata Y. Damborsky J. Nat. Chem. Biol. 2009;5:727–733. PubMed

Bednar D. Beerens K. Sebestova E. Bendl J. Khare S. Chaloupkova R. Prokop Z. Brezovsky J. Baker D. Damborsky J. PLoS Comput. Biol. 2015;11:e1004556. PubMed PMC

Musil M. Stourac J. Bendl J. Brezovsky J. Prokop Z. Zendulka J. Martinek T. Bednar D. Damborsky J. Nucleic Acids Res. 2017;45:W393–W399. PubMed PMC

Beerens K. Mazurenko S. Kunka A. Marques S. M. Hansen N. Musil M. Chaloupkova R. Waterman J. Brezovsky J. Bednar D. Prokop Z. Damborsky J. ACS Catal. 2018;8:9420–9428.

Svergun D. I. J. Appl. Crystallogr. 1992;25:495–503.

Krissinel E. Henrick K. J. Mol. Biol. 2007;372:774–797. PubMed

Tina K. G. Bhadra R. Srinivasan N. Nucleic Acids Res. 2007;35:W473–W476. PubMed PMC

Koudelakova T. Chaloupkova R. Brezovsky J. Prokop Z. Sebestova E. Hesseler M. Khabiri M. Plevaka M. Kulik D. Kuta Smatanova I. Rezacova P. Ettrich R. Bornscheuer U. T. Damborsky J. Angew. Chem., Int. Ed. 2013;52:1959–1963. PubMed

Liskova V. Bednar D. Prudnikova T. Rezacova P. Koudelakova T. Sebestova E. Smatanova I. K. Brezovsky J. Chaloupkova R. Damborsky J. ChemCatChem. 2015;7:648–659.

Chovancova E. Pavelka A. Benes P. Strnad O. Brezovsky J. Kozlikova B. Gora A. Sustr V. Klvana M. Medek P. Biedermannova L. Sochor J. Damborsky J. PLoS Comput. Biol. 2012;8:e1002708. PubMed PMC

Lafumat B. Mueller-Dieckmann C. Leonard G. Colloc’h N. Prangé T. Giraud T. Dobias F. Royant A. van der Linden P. Carpentier P. J. Appl. Crystallogr. 2016;49:1478–1487.

Markwick P. R. L. McCammon J. A. Phys. Chem. Chem. Phys. 2011;13:20053. PubMed

Hamelberg D. Mongan J. McCammon J. A. J. Chem. Phys. 2004;120:11919–11929. PubMed

Dehouck Y. Kwasigroch J. M. Gilis D. Rooman M. BMC Bioinf. 2011;12:151. PubMed PMC

Schymkowitz J. Borg J. Stricher F. Nys R. Rousseau F. Serrano L. Nucleic Acids Res. 2005;33:W382–W388. PubMed PMC

Rohl C. A., Strauss C. E. M., Misura K. M. S. and Baker D., Methods in Enzymology, Elsevier, 2004, vol. 383, pp. 66–93 PubMed

Jones B. J. Lim H. Y. Huang J. Kazlauskas R. J. Biochemistry. 2017;56:6521–6532. PubMed PMC

Han Z. Han S. Zheng S. Lin Y. Appl. Microbiol. Biotechnol. 2009;85:117–126. PubMed

Le Q. A. T. Joo J. C. Yoo Y. J. Kim Y. H. Biotechnol. Bioeng. 2012;109:867–876. PubMed

Yu X.-W. Tan N.-J. Xiao R. Xu Y. PLoS One. 2012;7:e46388. PubMed PMC

Siadat O. Lougarre A. Lamouroux L. Ladurantie C. Fournier D. BMC Biochem. 2006;7:12. PubMed PMC

Pikkemaat M. G. Linssen A. B. M. Berendsen H. J. C. Janssen D. B. Protein Eng., Des. Sel. 2002;15:185–192. PubMed

Yun H. S. Park H. J. Joo J. C. Yoo Y. J. J. Ind. Microbiol. Biotechnol. 2013;40:1223–1229. PubMed

Kumar R. Singh R. Kaur J. J. Mol. Catal. B: Enzym. 2013;97:243–251.

Zhang S.-B. Wu Z.-L. Bioresour. Technol. 2011;102:2093–2096. PubMed

Luan Z.-J. Yu H.-L. Ma B.-D. Qi Y.-K. Chen Q. Xu J.-H. Ind. Eng. Chem. Res. 2016;55:12167–12172.

Yan G. Cheng S. Zhao G. Wu S. Liu Y. Sun W. Biotechnol. Lett. 2003;25:1041–1047. PubMed

Zhang J. Lin Y. Sun Y. Ye Y. Zheng S. Han S. Enzyme Microb. Technol. 2012;50:325–330. PubMed

Huang J. Jones B. J. Kazlauskas R. J. Biochemistry. 2015;54:4330–4341. PubMed PMC

Park H. J. Park K. Kim Y. H. Yoo Y. J. J. Biotechnol. 2014;192:66–70. PubMed

Ruslan R. Rahman R. N. Z. R. A. Leow T. C. Ali M. S. M. Basri M. Salleh A. B. Int. J. Mol. Sci. 2012;13:943–960. PubMed PMC

Sharma P. K. Kumar R. Kumar R. Mohammad O. Singh R. Kaur J. Gene. 2012;491:264–271. PubMed

Wu J.-P. Li M. Zhou Y. Yang L.-R. Xu G. Biotechnol. Lett. 2015;37:403–407. PubMed

Gihaz S. Kanteev M. Pazy Y. Fishman A. Appl. Environ. Microbiol. 2018;84(23):e02143-18. PubMed PMC

Musil M. Konegger H. Hon J. Bednar D. Damborsky J. ACS Catal. 2019;9:1033–1054.

Goldenzweig A. Goldsmith M. Hill S. E. Gertman O. Laurino P. Ashani Y. Dym O. Unger T. Albeck S. Prilusky J. Lieberman R. L. Aharoni A. Silman I. Sussman J. L. Tawfik D. S. Fleishman S. J. Mol. Cell. 2016;63:337–346. PubMed PMC

Kreß N. Halder J. M. Rapp L. R. Hauer B. Curr. Opin. Chem. Biol. 2018;47:109–116. PubMed

Kokkonen P. Bednar D. Pinto G. Prokop Z. Damborsky J. Biotechnol. Adv. 2019;37:107386. PubMed

Stourac J. Vavra O. Kokkonen P. Filipovic J. Pinto G. Brezovsky J. Damborsky J. Bednar D. Nucleic Acids Res. 2019;47:W414–W422. PubMed PMC

Mazurenko S. ChemCatChem. 2020;12 doi: 10.1002/cctc.202000933. DOI

Mazurenko S. Prokop Z. Damborsky J. ACS Catal. 2020;10:1210–1223.

Colloc’h N. Carpentier P. Montemiglio L. C. Vallone B. Prangé T. Biophys. J. 2017;113:2199–2206. PubMed PMC

Kalms J. Schmidt A. Frielingsdorf S. van der Linden P. von Stetten D. Lenz O. Carpentier P. Scheerer P. Angew. Chem., Int. Ed. 2016;55:5586–5590. PubMed

Nurizzo D. Mairs T. Guijarro M. Rey V. Meyer J. Fajardo P. Chavanne J. Biasci J.-C. McSweeney S. Mitchell E. J. Synchrotron Radiat. 2006;13:227–238. PubMed

Kabsch W. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010;66:125–132. PubMed PMC

Evans P. R. Murshudov G. N. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2013;69:1204–1214. PubMed PMC

McCoy A. J. Grosse-Kunstleve R. W. Adams P. D. Winn M. D. Storoni L. C. Read R. J. J. Appl. Crystallogr. 2007;40:658–674. PubMed PMC

Adams P. D. Afonine P. V. Bunkóczi G. Chen V. B. Davis I. W. Echols N. Headd J. J. Hung L.-W. Kapral G. J. Grosse-Kunstleve R. W. McCoy A. J. Moriarty N. W. Oeffner R. Read R. J. Richardson D. C. Richardson J. S. Terwilliger T. C. Zwart P. H. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010;66:213–221. PubMed PMC

Afonine P. V. Grosse-Kunstleve R. W. Echols N. Headd J. J. Moriarty N. W. Mustyakimov M. Terwilliger T. C. Urzhumtsev A. Zwart P. H. Adams P. D. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2012;68:352–367. PubMed PMC

Emsley P. Cowtan K. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004;60:2126–2132. PubMed

Williams C. J. Headd J. J. Moriarty N. W. Prisant M. G. Videau L. L. Deis L. N. Verma V. Keedy D. A. Hintze B. J. Chen V. B. Jain S. Lewis S. M. Arendall W. B. Snoeyink J. Adams P. D. Lovell S. C. Richardson J. S. Richardson D. C. Protein Sci. 2018;27:293–315. PubMed PMC

The PyMOL Molecular Graphics System Version 2.0, Schrödinger, LLC, 2014

Franke D. Petoukhov M. V. Konarev P. V. Panjkovich A. Tuukkanen A. Mertens H. D. T. Kikhney A. G. Hajizadeh N. R. Franklin J. M. Jeffries C. M. Svergun D. I. J. Appl. Crystallogr. 2017;50:1212–1225. PubMed PMC

Valentini E. Kikhney A. G. Previtali G. Jeffries C. M. Svergun D. I. Nucleic Acids Res. 2015;43:D357–D363. PubMed PMC

Holm L. Rosenström P. Nucleic Acids Res. 2010;38:W545–W549. PubMed PMC

Krissinel E. Henrick K. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004;60:2256–2268. PubMed

Case D. A., Babin V., Berryman J. T., Betz R. M., Cai Q., Cerutti S., Cheatham III T. E., Darden T. A., Duke R. E., Gohlke H., Goetz A. W., Gusarov S., Homeyer N., Janowski P., Kaus J., Kolossváry I., Kovalenko A., Lee T. S., LeGrand S., Luchko T., Luo R., Madej B., Merz K. M., Paesani F., Roe D. R., Roitberg A., Sagui C., Salomon-Ferrer R., Seabra G., Simmerling C. L., Smith W., Swails J., Walker R. C., Wang J., Wolf R. M., Wu X. and Kollman P. A., AMBER 14, University of California, San Francisco, 2014

Gordon J. C. Myers J. B. Folta T. Shoja V. Heath L. S. Onufriev A. Nucleic Acids Res. 2005;33:W368–W371. PubMed PMC

Maier J. A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K. E. Simmerling C. J. Chem. Theory Comput. 2015;11:3696–3713. PubMed PMC

Jorgensen W. L. Chandrasekhar J. Madura J. D. Impey R. W. Klein M. L. J. Chem. Phys. 1983;79:926–935.

Götz A. W. Williamson M. J. Xu D. Poole D. Le Grand S. Walker R. C. J. Chem. Theory Comput. 2012;8:1542–1555. PubMed PMC

Le Grand S. Götz A. W. Walker R. C. Comput. Phys. Commun. 2013;184:374–380.

Darden T. York D. Pedersen L. J. Chem. Phys. 1993;98:10089–10092.

Ryckaert J.-P. Ciccotti G. Berendsen H. J. C. J. Comput. Phys. 1977;23:327–341.

Marques S. M. Dunajova Z. Prokop Z. Chaloupkova R. Brezovsky J. Damborsky J. J. Chem. Inf. Model. 2017;57:1970–1989. PubMed

Pierce L. C. T. Salomon-Ferrer R. de Oliveira C. A. F. McCammon J. A. Walker R. C. J. Chem. Theory Comput. 2012;8:2997–3002. PubMed PMC

Roe D. R. Cheatham T. E. J. Chem. Theory Comput. 2013;9:3084–3095. PubMed

Humphrey W. Dalke A. Schulten K. J. Mol. Graphics. 1996;14:33–38. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace