Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
34094357
PubMed Central
PMC8162949
DOI
10.1039/d0sc03367g
PII: d0sc03367g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Computational design of protein catalysts with enhanced stabilities for use in research and enzyme technologies is a challenging task. Using force-field calculations and phylogenetic analysis, we previously designed the haloalkane dehalogenase DhaA115 which contains 11 mutations that confer upon it outstanding thermostability (T m = 73.5 °C; ΔT m > 23 °C). An understanding of the structural basis of this hyperstabilization is required in order to develop computer algorithms and predictive tools. Here, we report X-ray structures of DhaA115 at 1.55 Å and 1.6 Å resolutions and their molecular dynamics trajectories, which unravel the intricate network of interactions that reinforce the αβα-sandwich architecture. Unexpectedly, mutations toward bulky aromatic amino acids at the protein surface triggered long-distance (∼27 Å) backbone changes due to cooperative effects. These cooperative interactions produced an unprecedented double-lock system that: (i) induced backbone changes, (ii) closed the molecular gates to the active site, (iii) reduced the volumes of the main and slot access tunnels, and (iv) occluded the active site. Despite these spatial restrictions, experimental tracing of the access tunnels using krypton derivative crystals demonstrates that transport of ligands is still effective. Our findings highlight key thermostabilization effects and provide a structural basis for designing new thermostable protein catalysts.
Zobrazit více v PubMed
Robinson P. K. Essays Biochem. 2015;59:1–41. PubMed PMC
Singh R. Kumar M. Mittal A. Mehta P. K. 3 Biotech. 2016;6:174. PubMed PMC
Yeoman C. J., Han Y., Dodd D., Schroeder C. M., Mackie R. I. and Cann I. K. O., Advances in applied microbiology, Elsevier, 2010, vol. 70, pp. 1–55 PubMed PMC
Kazlauskas R. Chem. Soc. Rev. 2018;47:9026–9045. PubMed
Pace C. N. Scholtz J. M. Grimsley G. R. FEBS Lett. 2014;588:2177–2184. PubMed PMC
Strickler S. S. Gribenko A. V. Gribenko A. V. Keiffer T. R. Tomlinson J. Reihle T. Loladze V. V. Makhatadze G. I. Biochemistry. 2006;45:2761–2766. PubMed
Pace C. N. Fu H. Fryar K. L. Landua J. Trevino S. R. Shirley B. A. Hendricks M. M. Iimura S. Gajiwala K. Scholtz J. M. Grimsley G. R. J. Mol. Biol. 2011;408:514–528. PubMed PMC
Damborsky J. Rorije E. Jesenska A. Nagata Y. Klopman G. Peijnenburg W. J. G. M. Environ. Toxicol. Chem. 2001;20:2681–2689. PubMed
Damborsky J., Chaloupkova R., Pavlova M., Chovancova E. and Brezovsky J., in Handbook of Hydrocarbon and Lipid Microbiology, Springer, Berlin, Heidelberg, 2010, pp. 1081–1098
Petrek M. Otyepka M. Banas P. Kosinova P. Koča J. Damborsky J. BMC Bioinf. 2006;7:316. PubMed PMC
Chaloupkova R. Sykorova J. Prokop Z. Jesenska A. Monincova M. Pavlova M. Tsuda M. Nagata Y. Damborska J. J. Biol. Chem. 2003;278:52622–52628. PubMed
Pavlova M. Klvana M. Prokop Z. Chaloupkova R. Banas P. Otyepka M. Wade R. C. Tsuda M. Nagata Y. Damborsky J. Nat. Chem. Biol. 2009;5:727–733. PubMed
Bednar D. Beerens K. Sebestova E. Bendl J. Khare S. Chaloupkova R. Prokop Z. Brezovsky J. Baker D. Damborsky J. PLoS Comput. Biol. 2015;11:e1004556. PubMed PMC
Musil M. Stourac J. Bendl J. Brezovsky J. Prokop Z. Zendulka J. Martinek T. Bednar D. Damborsky J. Nucleic Acids Res. 2017;45:W393–W399. PubMed PMC
Beerens K. Mazurenko S. Kunka A. Marques S. M. Hansen N. Musil M. Chaloupkova R. Waterman J. Brezovsky J. Bednar D. Prokop Z. Damborsky J. ACS Catal. 2018;8:9420–9428.
Svergun D. I. J. Appl. Crystallogr. 1992;25:495–503.
Krissinel E. Henrick K. J. Mol. Biol. 2007;372:774–797. PubMed
Tina K. G. Bhadra R. Srinivasan N. Nucleic Acids Res. 2007;35:W473–W476. PubMed PMC
Koudelakova T. Chaloupkova R. Brezovsky J. Prokop Z. Sebestova E. Hesseler M. Khabiri M. Plevaka M. Kulik D. Kuta Smatanova I. Rezacova P. Ettrich R. Bornscheuer U. T. Damborsky J. Angew. Chem., Int. Ed. 2013;52:1959–1963. PubMed
Liskova V. Bednar D. Prudnikova T. Rezacova P. Koudelakova T. Sebestova E. Smatanova I. K. Brezovsky J. Chaloupkova R. Damborsky J. ChemCatChem. 2015;7:648–659.
Chovancova E. Pavelka A. Benes P. Strnad O. Brezovsky J. Kozlikova B. Gora A. Sustr V. Klvana M. Medek P. Biedermannova L. Sochor J. Damborsky J. PLoS Comput. Biol. 2012;8:e1002708. PubMed PMC
Lafumat B. Mueller-Dieckmann C. Leonard G. Colloc’h N. Prangé T. Giraud T. Dobias F. Royant A. van der Linden P. Carpentier P. J. Appl. Crystallogr. 2016;49:1478–1487.
Markwick P. R. L. McCammon J. A. Phys. Chem. Chem. Phys. 2011;13:20053. PubMed
Hamelberg D. Mongan J. McCammon J. A. J. Chem. Phys. 2004;120:11919–11929. PubMed
Dehouck Y. Kwasigroch J. M. Gilis D. Rooman M. BMC Bioinf. 2011;12:151. PubMed PMC
Schymkowitz J. Borg J. Stricher F. Nys R. Rousseau F. Serrano L. Nucleic Acids Res. 2005;33:W382–W388. PubMed PMC
Rohl C. A., Strauss C. E. M., Misura K. M. S. and Baker D., Methods in Enzymology, Elsevier, 2004, vol. 383, pp. 66–93 PubMed
Jones B. J. Lim H. Y. Huang J. Kazlauskas R. J. Biochemistry. 2017;56:6521–6532. PubMed PMC
Han Z. Han S. Zheng S. Lin Y. Appl. Microbiol. Biotechnol. 2009;85:117–126. PubMed
Le Q. A. T. Joo J. C. Yoo Y. J. Kim Y. H. Biotechnol. Bioeng. 2012;109:867–876. PubMed
Yu X.-W. Tan N.-J. Xiao R. Xu Y. PLoS One. 2012;7:e46388. PubMed PMC
Siadat O. Lougarre A. Lamouroux L. Ladurantie C. Fournier D. BMC Biochem. 2006;7:12. PubMed PMC
Pikkemaat M. G. Linssen A. B. M. Berendsen H. J. C. Janssen D. B. Protein Eng., Des. Sel. 2002;15:185–192. PubMed
Yun H. S. Park H. J. Joo J. C. Yoo Y. J. J. Ind. Microbiol. Biotechnol. 2013;40:1223–1229. PubMed
Kumar R. Singh R. Kaur J. J. Mol. Catal. B: Enzym. 2013;97:243–251.
Zhang S.-B. Wu Z.-L. Bioresour. Technol. 2011;102:2093–2096. PubMed
Luan Z.-J. Yu H.-L. Ma B.-D. Qi Y.-K. Chen Q. Xu J.-H. Ind. Eng. Chem. Res. 2016;55:12167–12172.
Yan G. Cheng S. Zhao G. Wu S. Liu Y. Sun W. Biotechnol. Lett. 2003;25:1041–1047. PubMed
Zhang J. Lin Y. Sun Y. Ye Y. Zheng S. Han S. Enzyme Microb. Technol. 2012;50:325–330. PubMed
Huang J. Jones B. J. Kazlauskas R. J. Biochemistry. 2015;54:4330–4341. PubMed PMC
Park H. J. Park K. Kim Y. H. Yoo Y. J. J. Biotechnol. 2014;192:66–70. PubMed
Ruslan R. Rahman R. N. Z. R. A. Leow T. C. Ali M. S. M. Basri M. Salleh A. B. Int. J. Mol. Sci. 2012;13:943–960. PubMed PMC
Sharma P. K. Kumar R. Kumar R. Mohammad O. Singh R. Kaur J. Gene. 2012;491:264–271. PubMed
Wu J.-P. Li M. Zhou Y. Yang L.-R. Xu G. Biotechnol. Lett. 2015;37:403–407. PubMed
Gihaz S. Kanteev M. Pazy Y. Fishman A. Appl. Environ. Microbiol. 2018;84(23):e02143-18. PubMed PMC
Musil M. Konegger H. Hon J. Bednar D. Damborsky J. ACS Catal. 2019;9:1033–1054.
Goldenzweig A. Goldsmith M. Hill S. E. Gertman O. Laurino P. Ashani Y. Dym O. Unger T. Albeck S. Prilusky J. Lieberman R. L. Aharoni A. Silman I. Sussman J. L. Tawfik D. S. Fleishman S. J. Mol. Cell. 2016;63:337–346. PubMed PMC
Kreß N. Halder J. M. Rapp L. R. Hauer B. Curr. Opin. Chem. Biol. 2018;47:109–116. PubMed
Kokkonen P. Bednar D. Pinto G. Prokop Z. Damborsky J. Biotechnol. Adv. 2019;37:107386. PubMed
Stourac J. Vavra O. Kokkonen P. Filipovic J. Pinto G. Brezovsky J. Damborsky J. Bednar D. Nucleic Acids Res. 2019;47:W414–W422. PubMed PMC
Mazurenko S. ChemCatChem. 2020;12 doi: 10.1002/cctc.202000933. DOI
Mazurenko S. Prokop Z. Damborsky J. ACS Catal. 2020;10:1210–1223.
Colloc’h N. Carpentier P. Montemiglio L. C. Vallone B. Prangé T. Biophys. J. 2017;113:2199–2206. PubMed PMC
Kalms J. Schmidt A. Frielingsdorf S. van der Linden P. von Stetten D. Lenz O. Carpentier P. Scheerer P. Angew. Chem., Int. Ed. 2016;55:5586–5590. PubMed
Nurizzo D. Mairs T. Guijarro M. Rey V. Meyer J. Fajardo P. Chavanne J. Biasci J.-C. McSweeney S. Mitchell E. J. Synchrotron Radiat. 2006;13:227–238. PubMed
Kabsch W. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010;66:125–132. PubMed PMC
Evans P. R. Murshudov G. N. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2013;69:1204–1214. PubMed PMC
McCoy A. J. Grosse-Kunstleve R. W. Adams P. D. Winn M. D. Storoni L. C. Read R. J. J. Appl. Crystallogr. 2007;40:658–674. PubMed PMC
Adams P. D. Afonine P. V. Bunkóczi G. Chen V. B. Davis I. W. Echols N. Headd J. J. Hung L.-W. Kapral G. J. Grosse-Kunstleve R. W. McCoy A. J. Moriarty N. W. Oeffner R. Read R. J. Richardson D. C. Richardson J. S. Terwilliger T. C. Zwart P. H. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010;66:213–221. PubMed PMC
Afonine P. V. Grosse-Kunstleve R. W. Echols N. Headd J. J. Moriarty N. W. Mustyakimov M. Terwilliger T. C. Urzhumtsev A. Zwart P. H. Adams P. D. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2012;68:352–367. PubMed PMC
Emsley P. Cowtan K. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004;60:2126–2132. PubMed
Williams C. J. Headd J. J. Moriarty N. W. Prisant M. G. Videau L. L. Deis L. N. Verma V. Keedy D. A. Hintze B. J. Chen V. B. Jain S. Lewis S. M. Arendall W. B. Snoeyink J. Adams P. D. Lovell S. C. Richardson J. S. Richardson D. C. Protein Sci. 2018;27:293–315. PubMed PMC
The PyMOL Molecular Graphics System Version 2.0, Schrödinger, LLC, 2014
Franke D. Petoukhov M. V. Konarev P. V. Panjkovich A. Tuukkanen A. Mertens H. D. T. Kikhney A. G. Hajizadeh N. R. Franklin J. M. Jeffries C. M. Svergun D. I. J. Appl. Crystallogr. 2017;50:1212–1225. PubMed PMC
Valentini E. Kikhney A. G. Previtali G. Jeffries C. M. Svergun D. I. Nucleic Acids Res. 2015;43:D357–D363. PubMed PMC
Holm L. Rosenström P. Nucleic Acids Res. 2010;38:W545–W549. PubMed PMC
Krissinel E. Henrick K. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004;60:2256–2268. PubMed
Case D. A., Babin V., Berryman J. T., Betz R. M., Cai Q., Cerutti S., Cheatham III T. E., Darden T. A., Duke R. E., Gohlke H., Goetz A. W., Gusarov S., Homeyer N., Janowski P., Kaus J., Kolossváry I., Kovalenko A., Lee T. S., LeGrand S., Luchko T., Luo R., Madej B., Merz K. M., Paesani F., Roe D. R., Roitberg A., Sagui C., Salomon-Ferrer R., Seabra G., Simmerling C. L., Smith W., Swails J., Walker R. C., Wang J., Wolf R. M., Wu X. and Kollman P. A., AMBER 14, University of California, San Francisco, 2014
Gordon J. C. Myers J. B. Folta T. Shoja V. Heath L. S. Onufriev A. Nucleic Acids Res. 2005;33:W368–W371. PubMed PMC
Maier J. A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K. E. Simmerling C. J. Chem. Theory Comput. 2015;11:3696–3713. PubMed PMC
Jorgensen W. L. Chandrasekhar J. Madura J. D. Impey R. W. Klein M. L. J. Chem. Phys. 1983;79:926–935.
Götz A. W. Williamson M. J. Xu D. Poole D. Le Grand S. Walker R. C. J. Chem. Theory Comput. 2012;8:1542–1555. PubMed PMC
Le Grand S. Götz A. W. Walker R. C. Comput. Phys. Commun. 2013;184:374–380.
Darden T. York D. Pedersen L. J. Chem. Phys. 1993;98:10089–10092.
Ryckaert J.-P. Ciccotti G. Berendsen H. J. C. J. Comput. Phys. 1977;23:327–341.
Marques S. M. Dunajova Z. Prokop Z. Chaloupkova R. Brezovsky J. Damborsky J. J. Chem. Inf. Model. 2017;57:1970–1989. PubMed
Pierce L. C. T. Salomon-Ferrer R. de Oliveira C. A. F. McCammon J. A. Walker R. C. J. Chem. Theory Comput. 2012;8:2997–3002. PubMed PMC
Roe D. R. Cheatham T. E. J. Chem. Theory Comput. 2013;9:3084–3095. PubMed
Humphrey W. Dalke A. Schulten K. J. Mol. Graphics. 1996;14:33–38. PubMed
AggreProt: a web server for predicting and engineering aggregation prone regions in proteins
FireProt 2.0: web-based platform for the fully automated design of thermostable proteins