Multimeric structure of a subfamily III haloalkane dehalogenase-like enzyme solved by combination of cryo-EM and x-ray crystallography

. 2023 Oct ; 32 (10) : e4751.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37574754

Grantová podpora
Wellcome Trust - United Kingdom
209407/Z/17/Z Wellcome Trust - United Kingdom

Haloalkane dehalogenase (HLD) enzymes employ an SN 2 nucleophilic substitution mechanism to erase halogen substituents in diverse organohalogen compounds. Subfamily I and II HLDs are well-characterized enzymes, but the mode and purpose of multimerization of subfamily III HLDs are unknown. Here we probe the structural organization of DhmeA, a subfamily III HLD-like enzyme from the archaeon Haloferax mediterranei, by combining cryo-electron microscopy (cryo-EM) and x-ray crystallography. We show that full-length wild-type DhmeA forms diverse quaternary structures, ranging from small oligomers to large supramolecular ring-like assemblies of various sizes and symmetries. We optimized sample preparation steps, enabling three-dimensional reconstructions of an oligomeric species by single-particle cryo-EM. Moreover, we engineered a crystallizable mutant (DhmeAΔGG ) that provided diffraction-quality crystals. The 3.3 Å crystal structure reveals that DhmeAΔGG forms a ring-like 20-mer structure with outer and inner diameter of ~200 and ~80 Å, respectively. An enzyme homodimer represents a basic repeating building unit of the crystallographic ring. Three assembly interfaces (dimerization, tetramerization, and multimerization) were identified to form the supramolecular ring that displays a negatively charged exterior, while its interior part harboring catalytic sites is positively charged. Localization and exposure of catalytic machineries suggest a possible processing of large negatively charged macromolecular substrates.

Zobrazit více v PubMed

Assmann GM, Wang M, Diederichs K. Making a difference in multi‐data‐set crystallography: simple and deterministic data‐scaling/selection methods. Acta Crystallogr D Struct Biol. 2020;76:636–652. PubMed PMC

Babkova P, Sebestova E, Brezovsky J, Chaloupkova R, Damborsky J. Ancestral haloalkane dehalogenases show robustness and unique substrate specificity. Chembiochem. 2017;18:1448–1456. PubMed

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–242. PubMed PMC

Bunkoczi G, Read RJ. Improvement of molecular‐replacement models with sculptor. Acta Crystallogr D Biol Crystallogr. 2011;67:303–312. PubMed PMC

Bunkóczi G, Read RJ. Phenix. Ensembler: a tool for multiple superposition. Comput Crystallogr Newsl. 2011;2:8–9.

Chaloupkova R, Prudnikova T, Rezacova P, Prokop Z, Koudelakova T, Daniel L, et al. Structural and functional analysis of a novel haloalkane dehalogenase with two halide‐binding sites. Acta Crystallogr D Biol Crystallogr. 2014;70:1884–1897. PubMed

Chang A, Jeske L, Ulbrich S, Hofmann J, Koblitz J, Schomburg I, et al. BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 2021;49:D498–D508. PubMed PMC

Chovancova E, Kosinski J, Bujnicki JM, Damborsky J. Phylogenetic analysis of haloalkane dehalogenases. Proteins. 2007;67:305–316. PubMed

Chrast L, Tratsiak K, Planas‐Iglesias J, Daniel L, Prudnikova T, Brezovsky J, et al. Deciphering the structural basis of high thermostability of dehalogenase from psychrophilic bacterium Marinobacter sp. ELB17. Microorganisms. 2019;7:498. PubMed PMC

Christenson JK, Jensen MR, Goblirsch BR, Mohamed F, Zhang W, Wilmot CM, et al. Active multienzyme assemblies for long‐chain olefinic hydrocarbon biosynthesis. J Bacteriol. 2017;199:e00890. PubMed PMC

Christenson JK, Robinson SL, Engel TA, Richman JE, Kim AN, Wackett LP. OleB from bacterial hydrocarbon biosynthesis is a beta‐lactone decarboxylase that shares key features with haloalkane dehalogenases. Biochemistry. 2017;56:5278–5287. PubMed

Colman PM, Fehlhammer H, Bartels K. (1976). Crystallographic Computing Techniques. In: Bartels FR, Huml K, Sedlacek B, editors. Munksgaard: Copenhagen; 1976. p. 248–58.

Croll TI. ISOLDE: a physically realistic environment for model building into low‐resolution electron‐density maps. Acta Crystallogr D Struct Biol. 2018;74:519–530. PubMed PMC

Cui Y‐W, Gong X‐Y, Shi Y‐P, Wang Z. Salinity effect on production of PHA and EPS by Haloferax mediterranei . RSC Adv. 2017;7:53587–53595.

Damborsky J, Koča J. Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comaprisons. Protein Eng. 1999;12:989–998. PubMed

Damborsky J, Rorije E, Jesenska A, Nagata Y, Klopman G, Peijnenburg WJGM. Structure‐specificity relationships for haloalkane dehalogenases. Environ Toxicol Chem. 2001;20:2681–2689. PubMed

Dimitriou PS, Denesyuk A, Takahashi S, Yamashita S, Johnson MS, Nakayama T, et al. Alpha/beta‐hydrolases: a unique structural motif coordinates catalytic acid residue in 40 protein fold families. Proteins. 2017;85:1845–1855. PubMed

East NJ, Clifton BE, Jackson CJ, Kaczmarski JA. The role of oligomerization in the optimization of cyclohexadienyl dehydratase conformational dynamics and catalytic activity. Protein Sci. 2022;31:e4510. PubMed PMC

Franken SM, Rozeboom HJ, Kalk KH, Dijkstra BW. Crystal structure of haloalkane dehalogenase: an enzyme to detoxify halogenated alkanes. EMBO J. 1991;10:1297–1302. PubMed PMC

Fung HK, Gadd MS, Drury TA, Cheung S, Guss JM, Coleman NV, et al. Biochemical and biophysical characterisation of haloalkane dehalogenases DmrA and DmrB in Mycobacterium strain JS60 and their role in growth on haloalkanes. Mol Microbiol. 2015;97:439–453. PubMed

Gehret JJ, Gu L, Geders TW, Brown WC, Gerwick L, Gerwick WH, et al. Structure and activity of DmmA, a marine haloalkane dehalogenase. Protein Sci. 2012;21:239–248. PubMed PMC

Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 2018;27:14–25. PubMed PMC

Gwyther REA, Jones DD, Worthy HL. Better together: building protein oligomers naturally and by design. Biochem Soc Trans. 2019;47:1773–1780. PubMed PMC

Han J, Zhang F, Hou J, Liu X, Li M, Liu H, et al. Complete genome sequence of the metabolically versatile halophilic archaeon Haloferax mediterranei, a poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) producer. J Bacteriol. 2012;194:4463–4464. PubMed PMC

Henderson JP, Byun J, Mueller DM, Heinecke JW. The eosinophil peroxidase‐hydrogen peroxide‐bromide system of human eosinophils generates 5‐bromouracil, a mutagenic thymine analogue. Biochemistry. 2001;40:2052–2059. PubMed

Henderson JP, Byun J, Takeshita J, Heinecke JW. Phagocytes produce 5‐chlorouracil and 5‐bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue. J Biol Chem. 2003;278:23522–23528. PubMed

Hikiba J, Hirota K, Kagawa W, Ikawa S, Kinebuchi T, Sakane I, et al. Structural and functional analyses of the DMC1‐M200V polymorphism found in the human population. Nucleic Acids Res. 2008;36:4181–4190. PubMed PMC

Hochberg GKA, Shepherd DA, Marklund EG, Santhanagoplan I, Degiacomi MT, Laganowsky A, et al. Structural principles that enable oligomeric small heat‐shock protein paralogs to evolve distinct functions. Science. 2018;359:930–935. PubMed PMC

Janssen DB. Evolving haloalkane dehalogenases. Curr Opin Chem Biol. 2004;8:150–159. PubMed

Jesenska A, Monincova M, Koudelakova T, Hasan K, Chaloupkova R, Prokop Z, et al. Biochemical characterization of haloalkane dehalogenases DrbA and DmbC, representatives of a novel subfamily. Appl Environ Microbiol. 2009;75:5157–5160. PubMed PMC

Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018;27:112–128. PubMed PMC

Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr. 2010;66:125–132. PubMed PMC

Kantardjieff KA, Rupp B. Matthews coefficient probabilities: improved estimates for unit cell contents of proteins, DNA, and protein‐nucleic acid complex crystals. Protein Sci. 2003;12:1865–1871. PubMed PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. PubMed PMC

Kiss‐Szeman AJ, Straner P, Jakli I, Hosogi N, Harmat V, Menyhard DK, et al. Cryo‐EM structure of acylpeptide hydrolase reveals substrate selection by multimerization and a multi‐state serine‐protease triad. Chem Sci. 2022;13:7132–7142. PubMed PMC

Koudelakova T, Bidmanova S, Dvorak P, Pavelka A, Chaloupkova R, Prokop Z, et al. Haloalkane dehalogenases: biotechnological applications. Biotechnol J. 2013;8:32–45. PubMed

Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372:774–797. PubMed

Lahoda M, Mesters JR, Stsiapanava A, Chaloupkova R, Kuty M, Damborsky J, et al. Crystallographic analysis of 1,2,3‐trichloropropane biodegradation by the haloalkane dehalogenase DhaA31. Acta Crystallogr D Biol Crystallogr. 2014;70:209–217. PubMed

Lanyi JK. Salt‐dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev. 1974;38:272–290. PubMed PMC

Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, et al. Macromolecular structure determination using x‐rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D. 2019;75:861–877. PubMed PMC

Lynch M. Evolutionary diversification of the multimeric states of proteins. Proc Natl Acad Sci USA. 2013;110:E2821–E2828. PubMed PMC

Marek J, Vevodova J, Smatanova IK, Nagata Y, Svensson LA, Newman J, et al. Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry. 2000;39:14082–14086. PubMed

Marek M, Ramos‐Morales E, Picchi‐Constante GFA, Bayer T, Norstrom C, Herp D, et al. Species‐selective targeting of pathogens revealed by the atypical structure and active site of Trypanosoma cruzi histone deacetylase DAC2. Cell Rep. 2021;37:110129. PubMed

Marianayagam NJ, Sunde M, Matthews JM. The power of two: protein dimerization in biology. Trends Biochem Sci. 2004;29:618–625. PubMed

Markova K, Chmelova K, Marques SM, Carpentier P, Bednar D, Damborsky J, et al. Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst. Chem Sci. 2020;11:11162–11178. PubMed PMC

Markova K, Kunka A, Chmelova K, Havlasek M, Babkova P, Marques SM, et al. Computational enzyme stabilization can affect folding energy landscapes and lead to catalytically enhanced domain‐swapped dimers. ACS Catal. 2021;11:12864–12885.

Matthews BW. Solvent content of protein crystals. J Mol Biol. 1968;33:491–497. PubMed

Mazumdar PA, Hulecki JC, Cherney MM, Garen CR, James MN. X‐ray crystal structure of Mycobacterium tuberculosis haloalkane dehalogenase Rv2579. Biochim Biophys Acta. 2008;1784:351–362. PubMed

Mazur A, Prudnikova T, Grinkevich P, Mesters JR, Mrazova D, Chaloupkova R, et al. The tetrameric structure of the novel haloalkane dehalogenase DpaA from Paraglaciecola agarilytica NO2. Acta Crystallogr D Struct Biol. 2021;77:347–356. PubMed

McCoy AJ, Grosse‐Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Cryst. 2007;40:658–674. PubMed PMC

Nagata Y, Ohtsubo Y, Tsuda M. Properties and biotechnological applications of natural and engineered haloalkane dehalogenases. Appl Microbiol Biotechnol. 2015;99:9865–9881. PubMed

Novak HR, Sayer C, Isupov MN, Gotz D, Spragg AM, Littlechild JA. Biochemical and structural characterisation of a haloalkane dehalogenase from a marine Rhodobacteraceae. FEBS Lett. 2014;588:1616–1622. PubMed

Oakley AJ, Klvana M, Otyepka M, Nagata Y, Wilce MCJ, Damborsky J. Crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 A resolution: dynamics and catalytic residues. Biochemistry. 2004;43:870–878. PubMed

Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, et al. The α/β hydrolase fold. Protein Eng. 1992;5:197–211. PubMed

Oren A, Hallsworth JE. Microbial weeds in hypersaline habitats: the enigma of the weed‐like Haloferax mediterranei . FEMS Microbiol Lett. 2014;359:134–142. PubMed

Patoli BB, Winter JA, Patoli AA, Delahay RM, Bunting KA. Co‐expression and purification of the RadA recombinase with the RadB paralog from Haloferax volcanii yields heteromeric ring‐like structures. Microbiology. 2017;163:1802–1811. PubMed

Pavlova M, Klvana M, Prokop Z, Chaloupkova R, Banas P, Otyepka M, et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol. 2009;5:727–733. PubMed

Prokop Z, Sato Y, Brezovsky J, Mozga T, Chaloupkova R, Koudelakova T, et al. Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering. Angew Chem Int ed Engl. 2010;49:6111–6115. PubMed

Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for rapid unsupervised cryo‐EM structure determination. Nat Methods. 2017;14:290–296. PubMed

Read RJ, Schierbeek AJ. A phased translation function. J Appl Cryst. 1988;21:490–495.

Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–W324. PubMed PMC

Schenkmayerova A, Toul M, Pluskal D, Baatallah R, Gagnot G, Pinto GP, et al. Catalytic mechanism for Renilla‐type bioluminescence. Nat Catal. 2023;6:23–38.

Schrödinger, LLC . The PyMOL molecular graphics system, version 2.3.2. 2019.

Shan Y, Yu W, Shen L, Guo X, Zheng H, Zhong J, et al. Conjugation with inulin improves the environmental stability of haloalkane dehalogenase DhaA. Enzyme Microb Technol. 2021;149:109832. PubMed

Shin DS, Pellegrini L, Daniels DS, Yelent B, Craig L, Bates D, et al. Full‐length archaeal Rad51 structure and mutants: mechanism for RAD51 assembly and control by BRCA2. EMBO J. 2003;22:4566–4576. PubMed PMC

Stsiapanava A, Dohnalek J, Gavira JA, Kuty M, Koudelakova T, Damborsky J, et al. Atomic resolution studies of haloalkane dehalogenases DhaA04, DhaA14 and DhaA15 with engineered access tunnels. Acta Crystallogr D Biol Crystallogr. 2010;66:962–969. PubMed

Sumbalova L, Stourac J, Martinek T, Bednar D, Damborsky J. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res. 2018;46:W356–W362. PubMed PMC

Tan YZ, Baldwin PR, Davis JH, Williamson JR, Potter CS, Carragher B, et al. Addressing preferred specimen orientation in single‐particle cryo‐EM through tilting. Nat Methods. 2017;14:793–796. PubMed PMC

Terwilliger TC. Statistical density modification with non‐crystallographic symmetry. Acta Crystallogr D Biol Crystallogr. 2002;58:2082–2086. PubMed PMC

Ukkonen K, Vasala A, Ojamo H, Neubauer P. High‐yield production of biologically active recombinant protein in shake flask culture by combination of enzyme‐based glucose delivery and increased oxygen transfer. Microb Cell Fact. 2011;10:107. PubMed PMC

Valinluck V, Liu P, Kang JI Jr, Burdzy A, Sowers LC. 5‐halogenated pyrimidine lesions within a CpG sequence context mimic 5‐methylcytosine by enhancing the binding of the methyl‐CpG‐binding domain of methyl‐CpG‐binding protein 2 (MeCP2). Nucleic Acids Res. 2005;33:3057–3064. PubMed PMC

Vanacek P, Sebestova E, Babkova P, Bidmanova S, Daniel L, Dvorak P, et al. Exploration of enzyme diversity by integrating bioinformatics with expression analysis and biochemical characterization. ACS Catal. 2018;8:2402–2412.

Vasina M, Vanacek P, Hon J, Kovar D, Faldynova H, Kunka A, et al. Advanced database mining of efficient haloalkane dehalogenases by sequence and structure bioinformatics and microfluidics. Chem Catal. 2022;2:2704–2725.

Verschueren KHG, Seljee F, Rozeboom HJ, Kalk KH, Dijkstra BW. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature. 1993;363:693–698. PubMed

Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci U S A. 2020;117:1496–1503. PubMed PMC

Zhang K. Gctf: real‐time CTF determination and correction. J Struct Biol. 2016;193:1–12. PubMed PMC

Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA. MotionCor2: anisotropic correction of beam‐induced motion for improved cryo‐electron microscopy. Nat Methods. 2017;14:331–332. PubMed PMC

Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430:2237–2243. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...