Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19701186
DOI
10.1038/nchembio.205
PII: nchembio.205
Knihovny.cz E-zdroje
- MeSH
- biodegradace MeSH
- cirkulární dichroismus MeSH
- hydrolasy chemie genetika metabolismus MeSH
- látky znečišťující životní prostředí chemie MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- mutageneze cílená MeSH
- počítačová simulace MeSH
- propan analogy a deriváty chemie MeSH
- proteinové inženýrství * MeSH
- Rhodococcus enzymologie genetika růst a vývoj MeSH
- řízená evoluce molekul MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,2,3-trichloropropane MeSH Prohlížeč
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- látky znečišťující životní prostředí MeSH
- propan MeSH
Engineering enzymes to degrade anthropogenic compounds efficiently is challenging. We obtained Rhodococcus rhodochrous haloalkane dehalogenase mutants with up to 32-fold higher activity than wild type toward the toxic, recalcitrant anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. We identified key residues in access tunnels connecting the buried active site with bulk solvent by rational design and randomized them by directed evolution. The most active mutant has large aromatic residues at two out of three randomized positions and two positions modified by site-directed mutagenesis. These changes apparently enhance activity with TCP by decreasing accessibility of the active site for water molecules, thereby promoting activated complex formation. Kinetic analyses confirmed that the mutations improved carbon-halogen bond cleavage and shifted the rate-limiting step to the release of products. Engineering access tunnels by combining computer-assisted protein design with directed evolution may be a valuable strategy for refining catalytic properties of enzymes with buried active sites.
Zobrazit více v PubMed
Appl Environ Microbiol. 1999 Oct;65(10):4575-81 PubMed
Angew Chem Int Ed Engl. 2008;47(8):1508-11 PubMed
Biochemistry. 1999 Dec 7;38(49):16105-14 PubMed
Appl Environ Microbiol. 1998 Aug;64(8):2931-6 PubMed
J Am Chem Soc. 2003 Feb 12;125(6):1532-40 PubMed
Biotechnol Bioeng. 2004 Sep 20;87(6):779-90 PubMed
Protein Eng. 2002 Jul;15(7):595-601 PubMed
Nat Genet. 2005 Jan;37(1):73-6 PubMed
Curr Opin Biotechnol. 1999 Aug;10(4):365-9 PubMed
Nat Biotechnol. 2007 Mar;25(3):338-44 PubMed
J Bacteriol. 1987 Sep;169(9):4049-54 PubMed
Protein Sci. 2002 May;11(5):1206-17 PubMed
J Biol Chem. 2001 Jun 15;276(24):21500-5 PubMed
Proteins. 2007 May 1;67(2):305-16 PubMed
J Biotechnol. 2007 Oct 15;132(1):8-15 PubMed
J Gen Microbiol. 1990 Jan;136(1):115-20 PubMed
J Comput Aided Mol Des. 2006 Jun;20(6):375-83 PubMed
Angew Chem Int Ed Engl. 2006 Feb 13;45(8):1236-41 PubMed
Eur J Biochem. 1988 Jan 15;171(1-2):67-72 PubMed
Appl Environ Microbiol. 2002 Jul;68(7):3582-7 PubMed
Biochim Biophys Acta. 2007 Mar;1770(3):390-401 PubMed
Environ Sci Technol. 1995 Sep 1;29(9):2339-45 PubMed
Nucleic Acids Res. 2004 Feb 27;32(4):1448-59 PubMed
Appl Environ Microbiol. 2008 Mar;74(5):1555-66 PubMed
Biochemistry. 1996 May 7;35(18):5624-32 PubMed
Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2215-9 PubMed
J Am Chem Soc. 2004 Nov 24;126(46):15167-79 PubMed
BMC Bioinformatics. 2006 Jun 22;7:316 PubMed
J Biol Chem. 2003 Nov 14;278(46):45094-100 PubMed
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W376-83 PubMed
Trends Biotechnol. 2005 May;23(5):231-7 PubMed
Structure. 2001 Jan 10;9(1):1-9 PubMed
Biochemistry. 2003 Jul 8;42(26):8047-53 PubMed
Protein Sci. 2002 Jan;11(1):65-71 PubMed
Biochemistry. 2000 Nov 21;39(46):14082-6 PubMed
Adv Enzymol Relat Areas Mol Biol. 2007;75:241-94, xiii PubMed
Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5361-6 PubMed
Microbiology (Reading). 1997 Jan;143 ( Pt 1):109-115 PubMed
Nature. 1993 Jun 24;363(6431):693-8 PubMed
J Biol Chem. 2003 Dec 26;278(52):52622-8 PubMed
EMBO Rep. 2005 Jun;6(6):584-9 PubMed
Biochemistry. 2000 Nov 21;39(46):14348-55 PubMed
Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):5892-7 PubMed
Eur J Biochem. 2001 May;268(10):3117-25 PubMed
Microbiol Rev. 1992 Dec;56(4):677-94 PubMed
Nature. 2008 May 8;453(7192):190-5 PubMed
Environ Microbiol. 2005 Dec;7(12):1868-82 PubMed
Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst
Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips
Computational Study of Protein-Ligand Unbinding for Enzyme Engineering
ChannelsDB: database of biomacromolecular tunnels and pores
Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating
FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants
A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation
MOLE 2.0: advanced approach for analysis of biomacromolecular channels
CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures
MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels
GENBANK
AF060871
PDB
1CQW
PubChem-Substance
85083042, 85083043, 85083044, 85083045, 85083046, 85083047, 85083048, 85083049, 85083050, 85083051, 85083052, 85083053, 85083054, 85083055, 85083056, 85083057, 85083058, 85083059, 85083060, 85083061, 85083062, 85083063, 85083064, 85083065, 85083066, 85083067, 85083068, 85083069, 85083070, 85083071, 85083072, 85083073, 85083074, 85083075, 85083076, 85083077, 85083078, 85083079, 85083080, 85083081, 85083082