Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-07965S
Grantová Agentura České Republiky
LO1212
Ministerstvo Školství, Mládeže a Tělovýchovy
LO1214
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015051
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/2.1.00/01.0017
European Commission
PubMed
30249041
PubMed Central
PMC6210807
DOI
10.3390/s18103212
PII: s18103212
Knihovny.cz E-zdroje
- Klíčová slova
- 1,2,3-trichloropropane, Klarite 312, chloroalkane, microfluidics, surface enhanced Raman spectroscopy,
- Publikační typ
- časopisecké články MeSH
Optofluidics, a research discipline combining optics with microfluidics, currently aspires to revolutionize the analysis of biological and chemical samples, e.g., for medicine, pharmacology, or molecular biology. In order to detect low concentrations of analytes in water, we have developed an optofluidic device containing a nanostructured substrate for surface enhanced Raman spectroscopy (SERS). The geometry of the gold surface allows localized plasmon oscillations to give rise to the SERS effect, in which the Raman spectral lines are intensified by the interaction of the plasmonic field with the electrons in the molecular bonds. The SERS substrate was enclosed in a microfluidic system, which allowed transport and precise mixing of the analyzed fluids, while preventing contamination or abrasion of the highly sensitive substrate. To illustrate its practical use, we employed the device for quantitative detection of persistent environmental pollutant 1,2,3-trichloropropane in water in submillimolar concentrations. The developed sensor allows fast and simple quantification of halogenated compounds and it will contribute towards the environmental monitoring and enzymology experiments with engineered haloalkane dehalogenase enzymes.
Zobrazit více v PubMed
Wachsmann-Hogiu S., Weeks T., Huser T. Chemical analysis in vivo and in vitro by Raman spectroscopy - from single cells to humans. Curr. Opin. Biotechnol. 2009;20:63–73. doi: 10.1016/j.copbio.2009.02.006. PubMed DOI PMC
Paudel A., Raijada D., Rantanen J. Raman spectroscopy in pharmaceutical product design. Adv. Drug Deliv. Rev. 2015;89:3–20. doi: 10.1016/j.addr.2015.04.003. PubMed DOI
Mallick B., Lakshmanna A., Radhalakshmi V., Umapathy S. Design and development of stimulated Raman spectroscopy apparatus using a femtosecond laser system. Curr. Sci. 2008;95:1551–1559.
Smekal A. Zur quantentheorie der dispersion. Naturwissenschaftliche. 1923;11:873–875. doi: 10.1007/BF01576902. DOI
Raman C.V., Krishnan K.S. A new type of secondary radiation. Nature. 1928;121:501–502. doi: 10.1038/121501c0. DOI
Jeanmaire D.L., Duyne R.P.V. Surface Raman spectroelectrochemistry: Part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfaces Electrochem. 1977;84:1–20. doi: 10.1016/S0022-0728(77)80224-6. DOI
Creighton J.A., Blatchford C.G., Albrecht M.G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 1979;75:790–798. doi: 10.1039/f29797500790. DOI
Kneipp K., Kneipp H., Itzkan I., Dasari R.R., Feld M.S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999;99:2957–2976. doi: 10.1021/cr980133r. PubMed DOI
Sharma B., Frontiera R.R., Henry A.I., Ringe E., Duyne R.P.V. SERS: Materials, applications, and the future. Mater. Today. 2012;15:16–25. doi: 10.1016/S1369-7021(12)70017-2. DOI
Le Ru E.C., Blackie E., Meyer M., Etchegoin P.G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C. 2007;111:13794–13803. doi: 10.1021/jp0687908. DOI
Xu H., Aizpurua J., Kall M., Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E. 2000;62:4318–4324. doi: 10.1103/PhysRevE.62.4318. PubMed DOI
Yu X., Cai H., Zhang W., Li X., Pan N., Luo Y., Wang X., Hou J.G. Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano. 2011;5:952–958. doi: 10.1021/nn102291j. PubMed DOI
Kim N.J., Lin M., Hu Z., Li H. Evaporation-controlled chemical enhancement of SERS using a soft polymer substrate. Chem. Commun. (Camb.) 2009;41:6246–6248. doi: 10.1039/b907504f. PubMed DOI
Hakonen A., Svedendahl M., Ogier R., Yang Z.J., Lodewijks K., Verre R., Shegai T., Andersson P.O., Kall M. Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography. Nanoscale. 2015;7:9405–9410. doi: 10.1039/C5NR01654A. PubMed DOI
Maier S.A. Plasmonic field enhancement and SERS in the effective mode volume picture. Opt. Express. 2006;14:1957–1964. doi: 10.1364/OE.14.001957. PubMed DOI
De Luca A.C., Reader-Harris P., Mazilu M., Mariggio S., Corda D., Di Falco A. Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures. ACS Nano. 2014;8:2575–2583. doi: 10.1021/nn406200y. PubMed DOI
King M.D., Khadka S., Craig G.A., Mason M.D. Effect of local heating on the SERS efficiency of optically trapped prismatic nanoparticles. J. Phys. Chem. C. 2008;112:11751–11757. doi: 10.1021/jp803219x. DOI
Hakonen A., Wang F.C., Andersson P.O., Wingfors H., Rindzevicius T., Schmidt M.S., Soma V.R., Xu S., Li Y.Q., Boisen A., et al. Hand-held femtogram detection of hazardous picric acid with hydrophobic Ag nanopillar SERS substrates and mechanism of elasto-capillarity. ACS Sens. 2017;2:198–202. doi: 10.1021/acssensors.6b00749. PubMed DOI
Hakonen A., Wu K., Stenbek Schmidt M., Andersson P.O., Boisen A., Rindzevicius T. Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers. Talanta. 2018;189:649–652. doi: 10.1016/j.talanta.2018.07.009. PubMed DOI
Yamada K., Endo T., Imai H., Kido M., Jeong H., Ohno Y. Effectiveness of surface enhanced Raman spectroscopy of tear fluid with soft substrate for point-of-care therapeutic drug monitoring. SPIE BiOS. 2016:97150E. doi: 10.1117/12.2214614. DOI
Wen N., Zhao Z., Fan B., Chen D., Men D., Wang J., Chen J. Development of droplet microfluidics enabling high-throughput single-cell analysis. Molecules. 2016;21:881. doi: 10.3390/molecules21070881. PubMed DOI PMC
Zheng J., He L. Surface-enhanced Raman spectroscopy for the chemical analysis of food. Compr. Rev. Food Sci. Food Saf. 2014;13:317–328. doi: 10.1111/1541-4337.12062. PubMed DOI
Zhou Q., Meng G., Liu J., Huang Z., Han F., Zhu C., Kim D.J., Kim T., Wu N. A hierarchical nanostructure-based surface-enhanced Raman scattering sensor for preconcentration and detection of antibiotic pollutants. Adv. Mat. Technol. 2017;2:1700028. doi: 10.1002/admt.201700028. DOI
White I.M., Yazdi S.H., Yu W.W. Optofluidic SERS: Synergizing photonics and microfluidics for chemical and biological analysis. Microfluid. Nanofluid. 2012;13:205–216. doi: 10.1007/s10404-012-0962-2. DOI
Yazdi S.H., White I.M. Multiplexed detection of aquaculture fungicides using a pump-free optofluidic SERS microsystem. Analyst. 2013;138:100–103. doi: 10.1039/C2AN36232E. PubMed DOI
Wang M., Jing N., Chou I.H., Cote G.L., Kameoka J. An optofluidic device for surface enhanced Raman spectroscopy. Lab Chip. 2007;7:630–632. doi: 10.1039/b618105h. PubMed DOI
Parisi J., Su L., Lei Y. In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing. Lab Chip. 2013;13:1501–1508. doi: 10.1039/c3lc41249k. PubMed DOI
Xiong M., Ye J. Reproducibility in surface-enhanced Raman spectroscopy. J. Shanghai Jiaotong Univ. (Sci.) 2014;19:681–690. doi: 10.1007/s12204-014-1566-7. DOI
Reyer A., Prinz A., Giancristofaro S., Schneider J., Bertoldo Menezes D., Zickler G., Bourret G.R., Musso M.E. Investigation of mass-produced substrates for reproducible surface-enhanced Raman scattering measurements over large areas. ACS Appl. Mat. Interfaces. 2017;9:25445–25454. doi: 10.1021/acsami.7b06002. PubMed DOI
Dvorak P., Kurumbang N.P., Bendl J., Brezovsky J., Prokop Z., Damborsky J. Maximizing the efficiency of multienzyme process by stoichiometry optimization. ChemBioChem. 2014;15:1891–1895. doi: 10.1002/cbic.201402265. PubMed DOI
Kurumbang N.P., Dvorak P., Bendl J., Brezovsky J., Prokop Z., Damborsky J. Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant. ACS Synth. Biol. 2014;3:172–181. doi: 10.1021/sb400147n. PubMed DOI
Dvorak P., Bidmanova S., Damborsky J., Prokop Z. Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane. Environ. Sci. Technol. 2014;48:6859–6866. doi: 10.1021/es500396r. PubMed DOI
Perney N.M.B., Baumberg J.J., Zoorob M.E., Charlton M.D.B., Mahnkopf S., Netti C.M. Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering. Opt. Express. 2006;14:847–857. doi: 10.1364/OPEX.14.000847. PubMed DOI
Shiroma L.S., Piazzetta M.H.O., Duarte-Junior G.F., Coltro W.K.T., Carrilho E., Gobbi A.L., Lima R.S. Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices. Sci. Rep. 2016;6:26032. doi: 10.1038/srep26032. PubMed DOI PMC
McIlvaine T.C. A buffer solution for colorimetric comparison. J. Biol. Chem. 1921;49:183–186.
Brandt N.N., Brovko O.O., Chikishev A.Y., Paraschuk O.D. Optimization of the rolling-circle filter for Raman background subtraction. Appl. Spectrosc. 2006;60:288–293. doi: 10.1366/000370206776342553. PubMed DOI
Phan H.T., Haes A.J. Impacts of pH and intermolecular interactions on surface-enhanced Raman scattering chemical enhancements. J. Phys. Chem. C. 2018;122:14846–14856. doi: 10.1021/acs.jpcc.8b04019. DOI
Bi L., Wang Y., Yang Y., Li Y., Mo S., Zheng Q., Chen L. Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform. ACS Appl. Mater. Interf. 2018;10:15381–15387. doi: 10.1021/acsami.7b19347. PubMed DOI
Hardy M., Doherty M.D., Krstev I., Maier K., Moller T., Muller G., Dawson P. Detection of low-concentration contaminants in solution by exploiting chemical derivatization in surface-enhanced Raman spectroscopy. Anal. Chem. 2014;86:9006–9012. doi: 10.1021/ac5014095. PubMed DOI
Thorbjornsrud J., Ellestad O., Klaboe P., Torgrimsen T. Substituted propanes: VI. the vibrational spectra and conformations of 1,3-dichloro-, 1,3-bromochloro-, 1,3-dibromo- and 1,3-diiodo-propane. J. Mol. Struct. 1973;15:61–76. doi: 10.1016/0022-2860(73)87007-3. DOI
Pavlova M., Klvana M., Prokop Z., Chaloupkova R., Banas P., Otyepka M., Wade R.C., Tsuda M., Nagata Y., Damborsky J. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat. Chem. Biol. 2009;5:727–733. doi: 10.1038/nchembio.205. PubMed DOI
Dvorak P., Chrast L., Nikel P.I., Fedr R., Soucek K., Sedlackova M., Chaloupkova R., de Lorenzo V., Prokop Z., Damborsky J. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(de3) carrying a synthetic metabolic pathway. Microb. Cell. Factories. 2015;14:201. doi: 10.1186/s12934-015-0393-3. PubMed DOI PMC
Dvorak P., Nikel P.I., Damborsky J., de Lorenzo V. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol. Adv. 2017;35:845–866. doi: 10.1016/j.biotechadv.2017.08.001. PubMed DOI
Huang W., Jing Q., Du Y., Zhang B., Meng X., Sun M., Schanze K.S., Gao H., Xu P. An in situ SERS study of substrate-dependent surface plasmon induced aromatic nitration. J. Mater. Chem. C. 2015;3:5285–5291. doi: 10.1039/C5TC00835B. DOI
Ankudze B., Pakkanen T.T. Gold nanoparticle decorated Au-Ag alloy tubes: A bifunctional substrate for label-free and in situ surface-enhanced Raman scattering based reaction monitoring. Appl. Surf. Sci. 2018;453:341–349. doi: 10.1016/j.apsusc.2018.05.041. DOI
Oo S.Z., Charlton M.D.B., Eustace D., Chen R.Y., Pearce S.J., Pollard M.E. Optimization of SERS enhancement from nanostructured metallic substrate based on arrays of inverted rectangular pyramids and investigation of effect of lattice non-symmetry. Proc. SPIE. 2012;8234:8234–8237. doi: 10.1117/12.907336. DOI
Fukami K., Chourou M.L., Miyagawa R., Munoz Noval A., Sakka T., Manso-Silvan M., Martin-Palma R.J., Ogata Y.H. Gold nanostructures for surface-enhanced Raman spectroscopy, prepared by electrodeposition in porous silicon. Materials. 2011;4:791–800. doi: 10.3390/ma4040791. PubMed DOI PMC
Bandarenka H.V., Girel K.V., Zavatski S.A., Panarin A., Terekhov S.N. Progress in the development of SERS-active substrates based on metal-coated porous silicon. Materials. 2018;11:852. doi: 10.3390/ma11050852. PubMed DOI PMC
Mullen K., Carron K. Adsorption of chlorinated ethylenes at 1-octadecanethiol-modified silver surfaces. Anal. Chem. 1994;66:478–483. doi: 10.1021/ac00076a010. DOI
Storey J.M.E., Shelton R.D., Barber T.E., Wachter E.A. Electrochemical SERS detection of chlorinated hydrocarbons in aqueous solutions. Appl. Spectrosc. 1994;48:1265–1271. doi: 10.1366/0003702944027417. DOI