Effect of Nano-Sized Poly(Butyl Acrylate) Layer Grafted from Graphene Oxide Sheets on the Compatibility and Beta-Phase Development of Poly(Vinylidene Fluoride) and Their Vibration Sensing Performance
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1917457S
Czech Science Foundation
DKRVO (RP/CPS/2022/003
Ministry of Education Youth and Sports
PubMed
35628584
PubMed Central
PMC9146892
DOI
10.3390/ijms23105777
PII: ijms23105777
Knihovny.cz E-zdroje
- Klíčová slova
- SI-ATRP, compatibility, d33, dielectric properties, graphene oxide, poly(vinylidene fluoride), vibration sensing,
- MeSH
- akryláty MeSH
- fluorokarbonové polymery MeSH
- grafit MeSH
- polyvinyly * chemie MeSH
- vibrace * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akryláty MeSH
- fluorokarbonové polymery MeSH
- grafit MeSH
- graphene oxide MeSH Prohlížeč
- n-butyl acrylate MeSH Prohlížeč
- polyvinylidene fluoride MeSH Prohlížeč
- polyvinyly * MeSH
In this work, graphene oxide (GO) particles were modified with a nano-sized poly(butyl acrylate) (PBA) layer to improve the hydrophobicity of the GO and improve compatibility with PVDF. The improved hydrophobicity was elucidated using contact angle investigations, and exhibit nearly 0° for neat GO and 102° for GO-PBA. Then, the neat GO and GO-PBA particles were mixed with PVDF using a twin screw laboratory extruder. It was clearly shown that nano-sized PBA layer acts as plasticizer and shifts glass transition temperature from -38.7 °C for neat PVDF to 45.2 °C for PVDF/GO-PBA. Finally, the sensitivity to the vibrations of various frequencies was performed and the piezoelectric constant in the thickness mode, d33, was calculated and its electrical load independency were confirmed. Received values of the d33 were for neat PVDF 14.7 pC/N, for PVDF/GO 20.6 pC/N and for PVDF/GO-PBA 26.2 pC/N showing significant improvement of the vibration sensing and thus providing very promising systems for structural health monitoring and data harvesting.
Centre of Polymer Systems Tomas Bata University in Zlin 760 01 Zlin Czech Republic
Polymer Institute Slovak Academy of Sciences Dubravska cesta 9 845 45 Bratislava Slovakia
Zobrazit více v PubMed
Kim Y.K., Lee Y., Shin K.Y. Black phosphorus-based smart electrorheological fluid with tailored phase transition and exfoliation. J. Ind. Eng. Chem. 2020;90:333–340. doi: 10.1016/j.jiec.2020.07.032. DOI
Cvek M., Mrlik M., Ilcikova M., Mosnacek J., Babayan V., Kucekova Z., Humpolicek P., Pavlinek V. The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly(glycidyl methacrylate) and the magnetorheological activity of their suspensions. RSC Adv. 2015;5:72816–72824. doi: 10.1039/C5RA11968E. DOI
Lubtow M.M., Mrlik M., Hahn L., Altmann A., Beudert M., Luhmann T., Luxenhofer R. Temperature-Dependent Rheological and Viscoelastic Investigation of a Poly(2-methyl-2-oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-meth yl-2-oxazoline)-Based Thermogelling Hydrogel. J. Func. Biomater. 2019;10:36. doi: 10.3390/jfb10030036. PubMed DOI PMC
Krupa I., Sobolciak P., Mrlik M. Smart Non-Woven Fiber Mats with Light-Induced Sensing Capability. Nanomaterials. 2020;10:77. doi: 10.3390/nano10010077. PubMed DOI PMC
Czanikova K., Torras N., Esteve J., Krupa I., Kasak P., Pavlova E., Racko D., Chodak I., Omastova M. Nanocomposite photoactuators based on an ethylene vinyl acetate copolymer filled with carbon nanotubes. Sens. Actuator B Chem. 2013;186:701–710. doi: 10.1016/j.snb.2013.06.054. DOI
Gaca M., Ilcikova M., Mrlik M., Cvek M., Vaulot C., Urbanek P., Pietrasik R., Krupa I., Pietrasik J. Impact of ionic liquids on the processing and photo-actuation behavior of SBR composites containing graphene nanoplatelets. Sens. Actuator B Chem. 2021;329 doi: 10.1016/j.snb.2020.129195. DOI
Yang W.X., Li Y.G., Feng L., Hou Y.M., Wang S., Yang B., Hu X.M., Zhang W., Ramakrishna S. GO/Bi(2)S(3)Doped PVDF/TPU Nanofiber Membrane with Enhanced Photothermal Performance. Int. J. Mol. Sci. 2020;21:4224. doi: 10.3390/ijms21124224. PubMed DOI PMC
Mrlik M., Spirek M., Al-Khori J., Ahmad A.A., Mosnacek J., AlMaadeed M.A., Kasak P. Mussel-mimicking sulfobetaine-based copolymer with metal tunable gelation, self-healing and antibacterial capability. Arab. J. Chem. 2020;13:193–204. doi: 10.1016/j.arabjc.2017.03.009. DOI
Li Q.Q., Ke W.Y., Chang T.X., Hu Z.J. A molecular ferroelectrics induced electroactive phase in solution processed PVDF films for flexible piezoelectric sensors. J. Mater. Chem. C. 2019;7:1532–1543. doi: 10.1039/C8TC05090B. DOI
Thuau D., Kallitsis K., Dos Santos F.D., Hadziioannou G. All inkjet-printed piezoelectric electronic devices: Energy generators, sensors and actuators. J. Mater. Chem. C. 2017;5:9963–9966. doi: 10.1039/C7TC02558K. DOI
Liu J.F., Shang Y.H., Shao Z.Z., Liu X.G., Zhang C.H. Three-Dimensional Printing to Translate Simulation to Architecting for Three-Dimensional High Performance Piezoelectric Energy Harvester. Ind. Eng. Chem. Res. 2022;61:433–440. doi: 10.1021/acs.iecr.1c04433. DOI
Paria S., Karan S.K., Bera R., Das A.K., Maitra A., Khatua B.B. A Facile Approach To Develop a Highly Stretchable PVC/ZnSnO3 Piezoelectric Nanogenerator with High Output Power Generation for Powering Portable Electronic Devices. Ind. Eng. Chem. Res. 2016;55:10671–10680. doi: 10.1021/acs.iecr.6b02172. DOI
Panwar V., Anoop G. Enhanced sensing performance of carboxyl graphene-ionic liquid attached ionic polymer-metal nanocomposite based polymer strain sensors. J. Mater. Chem. C. 2018;6:8395–8404. doi: 10.1039/C8TC02360C. DOI
Pu J.A., Yan X.J., Jiang Y.D., Chang C.E., Lin L.W. Piezoelectric actuation of direct-write electrospun fibers. Sens. Actuator A Phys. 2010;164:131–136. doi: 10.1016/j.sna.2010.09.019. DOI
Yi J.G., Liang H. A PVDF-based deformation and motion sensor: Modeling and experiments. IEEE Sens. J. 2008;8:384–391. doi: 10.1109/jsen.2008.917483. DOI
Yin F.X., Li X.X., Peng H.F., Li F., Yang K., Yuan W.J. A highly sensitive, multifunctional, and wearable mechanical sensor based on RGO/synergetic fiber bundles for monitoring human actions and physiological signals. Sens. Actuator B Chem. 2019;285:179–185. doi: 10.1016/j.snb.2019.01.063. DOI
Roy K., Ghosh S.K., Sultana A., Garain S., Xie M.Y., Bowen C.R., Henkel K., Schmeisser D., Mandal D. A Self-Powered Wearable Pressure Sensor and Pyroelectric Breathing Sensor Based on GO Interfaced PVDF Nanofibers. ACS Appl. Nano Mater. 2019;2:2013–2025. doi: 10.1021/acsanm.9b00033. DOI
Moghadam B.H., Hasanzadeh M., Simchi A. Self-Powered Wearable Piezoelectric Sensors Based on Polymer Nanofiber-Metal-Organic Framework Nanoparticle Composites for Arterial Pulse Monitoring. ACS Appl. Nano Mater. 2020;3:8742–8752. doi: 10.1021/acsanm.0c01551. DOI
Bhalla S., Kaur N. Prognosis of low-strain fatigue induced damage in reinforced concrete structures using embedded piezo-transducers. Int. J. Fatigue. 2018;113:98–112. doi: 10.1016/j.ijfatigue.2018.04.002. DOI
Pearson M.R., Eaton M.J., Pullin R., Featherston C.A., Holford K.M. Modern Practice in Stress and Vibration Analysis 2012. Vol. 382 IOP Publishing Ltd.; Bristol, UK: 2012. Energy Harvesting for Aerospace Structural Health Monitoring Systems.
Zelenika S., Hadas Z., Bader S., Becker T., Gljušćić P., Hlinka J., Janak L., Kamenar E., Ksica F., Kyratsi T., et al. Energy Harvesting Technologies for Structural Health Monitoring of Airplane Components—A Review. Sensors. 2020;20:6685. doi: 10.3390/s20226685. PubMed DOI PMC
Yan R.Q., Gao R.X. Approximate Entropy as a diagnostic tool for machine health monitoring. Mech. Syst. Signal Proc. 2007;21:824–839. doi: 10.1016/j.ymssp.2006.02.009. DOI
Balamurugan V., Narayanan S. A piezolaminated composite degenerated shell finite element for active control of structures with distributed piezosensors and actuators. Smart Mater. Struct. 2008;17:18. doi: 10.1088/0964-1726/17/3/035031. DOI
Wei H.G., Wang H., Xia Y.J., Cui D.P., Shi Y.P., Dong M.Y., Liu C.T., Ding T., Zhang J.X., Ma Y., et al. An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. C. 2018;6:12446–12467. doi: 10.1039/C8TC04515A. DOI
Wang H., Lin H.T., Wereszczak A.A. Strength Properties of Poled Lead Zirconate Titanate Subjected to Biaxial Flexural Loading in High Electric Field. J. Am. Ceram. Soc. 2010;93:2843–2849. doi: 10.1111/j.1551-2916.2010.03800.x. DOI
Issa A.A., Al-Maadeed M., Luyt A.S., Mrlik M., Hassan M.K. Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano)fibers. J. Appl. Polym. Sci. 2016;133:12. doi: 10.1002/app.43594. DOI
Gharib A., Karimi M.S., Arani A.G. Vibration analysis of the embedded piezoelectric polymeric nano-composite panels in the elastic substrate. Compos. Part B Eng. 2016;101:64–76. doi: 10.1016/j.compositesb.2016.06.077. DOI
Ghafari E., Lu N. Self-polarized electrospun polyvinylidene fluoride (PVDF) nanofiber for sensing applications. Compos. Part B Eng. 2019;160:1–9. doi: 10.1016/j.compositesb.2018.10.011. DOI
Bae J.H., Chang S.H. A new approach to fabricate poly(vinylidene fluoride-trifluoroethylene) fibers using a torsion-stretching method and characterization of their piezoelectric properties. Compos. Part B Eng. 2016;99:112–120. doi: 10.1016/j.compositesb.2016.06.037. DOI
Gaur A., Shukla R., Brajesh K., Pal A., Chatterji S., Ranjan R., Maiti P. Processing and nanoclay induced piezoelectricity in poly(vinylidene fluoride-co-hexafluoro propylene) nanohybrid for device application. Polymer. 2016;97:362–369. doi: 10.1016/j.polymer.2016.05.049. DOI
Yuan D., Li Z.B., Thitsartarn W., Fan X.S., Sun J.T., Li H., He C.B. beta phase PVDF-hfp induced by mesoporous SiO2 nanorods: Synthesis and formation mechanism. J. Mater. Chem. C. 2015;3:3708–3713. doi: 10.1039/C5TC00005J. DOI
Sahoo R., Mishra S., Unnikrishnan L., Mohanty S., Mahapatra S., Nayak S.K., Anwar S., Ramadoss A. Enhanced dielectric and piezoelectric properties of Fe-doped ZnO/PVDF-TrFE composite films. Mater. Sci. Semicond. Process. 2020;117:9. doi: 10.1016/j.mssp.2020.105173. DOI
Huang W.J., Li Z.P., Chen X., Tian P.F., Lu J., Zhou Z.W., Huang R., Hui D., He L.P., Zhang C.L., et al. Pressure-controlled growth of piezoelectric low-dimensional structures in ternary fullerene C60/carbon nanotube/poly (vinylidene fluoride) based hybrid composites. Compos. Part B Eng. 2014;62:126–136. doi: 10.1016/j.compositesb.2014.02.026. DOI
Huang L.Y., Lu C.X., Wang F., Wang L. Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. RSC Adv. 2014;4:45220–45229. doi: 10.1039/C4RA07379G. DOI
Siponkoski T., Nelo M., Palosaari J., Perantie J., Sobocinski M., Juuti J., Jantunen H. Electromechanical properties of PZT/P(VDF-TrFE) composite ink printed on a flexible organic substrate. Compos. Part B Eng. 2015;80:217–222. doi: 10.1016/j.compositesb.2015.05.018. DOI
Cai J., Hu N., Wu L.K., Liu Y.H., Li Y., Ning H.M., Liu X.Y., Lin L.Y. Preparing carbon black/graphene/PVDF-HFP hybrid composite films of high piezoelectricity for energy harvesting technology. Compos. Part A Appl. Sci. Manuf. 2019;121:223–231. doi: 10.1016/j.compositesa.2019.03.031. DOI
Thangavel E., Ramasundaram S., Pitchaimuthu S., Hong S.W., Lee S.Y., Yoo S.S., Kim D.E., Ito E., Karig Y.S. Structural and tribological characteristics of poly(vinylidene fluoride)/functionalized graphene oxide nanocomposite thin films. Compos. Sci. Technol. 2014;90:187–192. doi: 10.1016/j.compscitech.2013.11.007. DOI
Jaleh B., Jabbari A. Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl. Surf. Sci. 2014;320:339–347. doi: 10.1016/j.apsusc.2014.09.030. DOI
Issa A.A., Al-Maadeed M.A.S., Mrlik M., Luyt A.S. Electrospun PVDF graphene oxide composite fibre mats with tunable physical properties. J. Polym. Res. 2016;23:13. doi: 10.1007/s10965-016-1126-y. DOI
Sencadas V., Gregorio R., Lanceros-Mendez S. alpha to beta Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. J. Macromol. Sci. Part B Phys. 2009;48:514–525. doi: 10.1080/00222340902837527. DOI
Martins P., Lopes A.C., Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014;39:683–706. doi: 10.1016/j.progpolymsci.2013.07.006. DOI
Liu G.M., Schneider K., Zheng L.C., Zhang X.Q., Li C.C., Stamm M., Wang D.J. Stretching induced phase separation in poly(vinylidene fluoride)/poly(butylene succinate) blends studied by in-situ X-ray scattering. Polymer. 2014;55:2588–2596. doi: 10.1016/j.polymer.2014.03.055. DOI
Salimi A., Yousefi A.A. FTIR studies of beta-phase crystal formation in stretched PVDF films. Polym. Test. 2003;22:699–704. doi: 10.1016/S0142-9418(03)00003-5. DOI
Fang J., Niu H.T., Wang H.X., Wang X.G., Lin T. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 2013;6:2196–2202. doi: 10.1039/c3ee24230g. DOI
Castkova K., Kastyl J., Sobola D., Petrus J., Stastna E., Riha D., Tofel P. Structure-Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC
Ponnamma D., Parangusan H., Tanvir A., AlMa’adeed M.A. Smart and robust electrospun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles. Mater. Des. 2019;184:10. doi: 10.1016/j.matdes.2019.108176. DOI
Florczak S., Lorson T., Zheng T., Mrlik M., Hutmacher D.W., Higgins M.J., Luxenhofer R., Dalton P.D. Melt electrowriting of electroactive poly(vinylidene difluoride) fibers. Polym. Int. 2019;68:735–745. doi: 10.1002/pi.5759. DOI
Huan Y., Liu Y.Y., Yang Y.F., Wu Y.N. Influence of extrusion, stretching and poling on the structural and piezoelectric properties of poly (vinylidene fluoride-hexafluoropropylene) copolymer films. J. Appl. Polym. Sci. 2007;104:858–862. doi: 10.1002/app.25603. DOI
Lee C., Tarbutton J.A. Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications. Smart Mater. Struct. 2014;23:7. doi: 10.1088/0964-1726/23/9/095044. DOI
Zygo M., Mrlik M., Ilcikova M., Hrabalikova M., Osicka J., Cvek M., Sedlacik M., Hanulikova B., Munster L., Skoda D., et al. Effect of Structure of Polymers Grafted from Graphene Oxide on the Compatibility of Particles with a Silicone-Based Environment and the Stimuli-Responsive Capabilities of Their Composites. Nanomaterials. 2020;10:591. doi: 10.3390/nano10030591. PubMed DOI PMC
Ilcikova M., Mrlik M., Spitalsky Z., Micusik M., Csomorova K., Sasinkova V., Kleinova A., Mosnacek J. A tertiary amine in two competitive processes: Reduction of graphene oxide vs. catalysis of atom transfer radical polymerization. RSC Adv. 2015;5:3370–3376. doi: 10.1039/C4RA12915F. DOI
Kultravut K., Kuboyama K., Sedlarik V., Mrlik M., Osicka J., Drohsler P., Ougizawa T. Localization of Poly(glycidyl methacrylate) Grafted on Reduced Graphene Oxide in Poly(lactic acid)/Poly(trimethylene terephthalate) Blends for Composites with Enhanced Electrical and Thermal Conductivities. Acs Appl. Nano Mater. 2021;4:8511–8519. doi: 10.1021/acsanm.1c01843. DOI
Cvek M., Mrlik M., Ilcikova M., Mosnacek J., Munster L., Pavlinek V. Synthesis of Silicone Elastomers Containing Silyl-Based Polymer Grafted Carbonyl Iron Particles: An Efficient Way To Improve Magnetorheological, Damping, and Sensing Performances. Macromolecules. 2017;50:2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI
Osicka J., Ilcikova M., Mrlik M., Minarik A., Pavlinek V., Mosnacek J. The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites. Polymers. 2017;9:264. doi: 10.3390/polym9070264. PubMed DOI PMC
Kutalkova E., Mrlik M., Ilcikova M., Osicka J., Sedlacik M., Mosnacek J. Enhanced and Tunable Electrorheological Capability using Surface Initiated Atom Transfer Radical Polymerization Modification with Simultaneous Reduction of the Graphene Oxide by Silyl-Based Polymer Grafting. Nanomaterials. 2019;9:308. doi: 10.3390/nano9020308. PubMed DOI PMC
Mrlik M., Ilcikova M., Plachy T., Moucka R., Pavlinek V., Mosnacek J. Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl methacrylate) J. Ind. Eng. Chem. 2018;57:104–112. doi: 10.1016/j.jiec.2017.08.013. DOI
Tanvir A., Sobolciak P., Popelka A., Mrlik M., Spitalsky Z., Micusik M., Prokes J., Krupa I. Electrically Conductive, Transparent Polymeric Nanocomposites Modified by 2D Ti3C2Tx (MXene) Polymers. 2019;11:1272. doi: 10.3390/polym11081272. PubMed DOI PMC
Preda F.M., Alegria A., Bocahut A., Fillott L.A., Long D.R., Sotta P. Investigation of Water Diffusion Mechanisms in Relation to Polymer Relaxations in Polyamides. Macromolecules. 2015;48:5730–5741. doi: 10.1021/acs.macromol.5b01295. DOI
Mrlik M., Leadenham S., AlMaadeed M.A., Erturk A. Figure of merit comparison of PP-based electret and PVDF-based piezoelectric polymer energy harvesters. In: Park G., editor. Active and Passive Smart Structures and Integrated Systems 2016. Vol. 9799 Spie-Int Soc Optical Engineering; Bellingham, WA, USA: 2016.
Chamakh M.M., Mrlík M., Leadenham S., Bažant P., Osička J., AlMaadeed M.A.A., Erturk A., Kuřitka I. Vibration Sensing Systems Based on Poly(Vinylidene Fluoride) and Microwave-Assisted Synthesized ZnO Star-Like Particles with Controllable Structural and Physical Properties. Nanomaterials. 2020;10:2345. doi: 10.3390/nano10122345. PubMed DOI PMC
Zhang W.L., Liu Y.D., Choi H.J., Kim S.G. Electrorheology of Graphene Oxide. ACS Appl. Mater. Interfaces. 2012;4:2267–2272. doi: 10.1021/am300267f. PubMed DOI
Wu Y.H., Cao R., Wu G.X., Huang W.C., Chen Z., Yang X.M., Tu Y.F. From ultratough artificial nacre to elastomer: Poly (n-butyl acrylate) grafted graphene oxide nanocomposites. Compos. Part A Appl. Sci. Manuf. 2016;88:156–164. doi: 10.1016/j.compositesa.2016.05.028. DOI
Osicka J., Mrlik M., Ilcikova M., Krupa I., Sobolciak P., Plachy T., Mosnacek J. Controllably coated graphene oxide particles with enhanced compatibility with poly(ethylene-co-propylene) thermoplastic elastomer for excellent photo-mechanical actuation capability. React. Funct. Polym. 2020;148:8. doi: 10.1016/j.reactfunctpolym.2020.104487. DOI
Ji X.Y., Chen D.Y., Zheng Y., Shen J.B., Guo S.Y., Harkin-Jones E. Multilayered assembly of poly(vinylidene fluoride) and poly(methyl methacrylate) for achieving multi-shape memory effects. Chem. Eng. J. 2019;362:190–198. doi: 10.1016/j.cej.2019.01.016. DOI
Ilcikova M., Mrlik M., Sedlacek T., Slouf M., Zhigunov A., Koynov K., Mosnacek J. Synthesis of Photoactuating Acrylic Thermoplastic Elastomers Containing Diblock Copolymer-Grafted Carbon Nanotubes. ACS Macro Lett. 2014;3:999–1003. doi: 10.1021/mz500444m. PubMed DOI
Atorngitjawat P. Effects of Processing Conditions and Crystallization on Dynamic Relaxations in Semicrystalline Poly(vinylidene fluoride) Films. Macromol. Res. 2017;25:391–399. doi: 10.1007/s13233-017-5060-6. DOI
Frubing P., Wang F.P., Wagener M. Relaxation processes and structural transitions in stretched films of polyvinylidene fluoride and its copolymer with hexafluoropropylene. Appl. Phys. A Mater. Sci. Process. 2012;107:603–611. doi: 10.1007/s00339-012-6838-1. DOI
Correia D.M., Costa C.M., Serra R.S.I., Tejedor J.A.G., Biosca L.T., Bermudez V.D., Esperanca J., Reis P.M., Balado A.A., Meseguer-Duenas J.M., et al. Molecular relaxation and ionic conductivity of ionic liquids confined in a poly(vinylidene fluoride) polymer matrix: Influence of anion and cation type. Polymer. 2019;171:58–69. doi: 10.1016/j.polymer.2019.03.032. DOI
Costa C.M., Serra R.S.I., Balado A.A., Ribelles J.L.G., Lanceros-Mendez S. Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O-3 composites. Polymer. 2020;204:9. doi: 10.1016/j.polymer.2020.122811. DOI
Galeziewska M., Lipinska M., Mrlik M., Ilcikova M., Gajdosova V., Slouf M., Achbergerová E., Musilová L., Mosnacek J., Pietrasik J. Polyacrylamide brushes with varied morphologies as a tool for control of the intermolecular interactions within EPDM/MVQ blends. Polymer. 2021;215:123387. doi: 10.1016/j.polymer.2021.123387. DOI
Moucka R., Mrlik M., Ilcikova M., Spitalsky Z., Kazantseva N., Bober P., Stejskal J. Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles. Chem. Pap. 2013;67:1012–1019. doi: 10.2478/s11696-013-0351-7. DOI
Shehata N., Kandas I., Hassounah I., Sobolciak P., Krupa I., Mrlik M., Popelka A., Steadman J., Lewis R. Piezoresponse, Mechanical, and Electrical Characteristics of Synthetic Spider Silk Nanofibers. Nanomaterials. 2018;8:585. doi: 10.3390/nano8080585. PubMed DOI PMC