Energy Harvesting Technologies for Structural Health Monitoring of Airplane Components-A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
COST Action CA18203 "Optimising Design for Inspection" (ODIN)
European Cooperation in Science and Technology
PubMed
33266489
PubMed Central
PMC7700503
DOI
10.3390/s20226685
PII: s20226685
Knihovny.cz E-zdroje
- Klíčová slova
- airplane, energy harvesting, kinetic, non-destructive evaluation, power management, smart skin, solar, thermoelectric,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
With the aim of increasing the efficiency of maintenance and fuel usage in airplanes, structural health monitoring (SHM) of critical composite structures is increasingly expected and required. The optimized usage of this concept is subject of intensive work in the framework of the EU COST Action CA18203 "Optimising Design for Inspection" (ODIN). In this context, a thorough review of a broad range of energy harvesting (EH) technologies to be potentially used as power sources for the acoustic emission and guided wave propagation sensors of the considered SHM systems, as well as for the respective data elaboration and wireless communication modules, is provided in this work. EH devices based on the usage of kinetic energy, thermal gradients, solar radiation, airflow, and other viable energy sources, proposed so far in the literature, are thus described with a critical review of the respective specific power levels, of their potential placement on airplanes, as well as the consequently necessary power management architectures. The guidelines provided for the selection of the most appropriate EH and power management technologies create the preconditions to develop a new class of autonomous sensor nodes for the in-process, non-destructive SHM of airplane components.
Centre of Physics of University of Minho and Porto Campus de Gualtar 4710 057 Braga Portugal
Centre of Polymer Systems Tomas Bata University in Zlín 76001 Zlín Czech Republic
Department of Electronics Design Mid Sweden University Holmgatan 10 85170 Sundsvall Sweden
Faculty of Electrical Engineering and Computing University of Zagreb Unska 3 10000 Zagreb Croatia
Thobecore Consulting and Research 27711 Osterholz Scharmbeck Germany
University of Rijeka Faculty of Engineering Vukovarska 58 51000 Rijeka Croatia
Zobrazit více v PubMed
Becker T., Kluge M., Schalk J., Tiplady K., Paget C., Hilleringmann U., Otterpohl T. Autonomous Sensor Nodes for Aircraft Structural Health Monitoring. IEEE Sens. J. 2009;9:1589–1595. doi: 10.1109/JSEN.2009.2028775. DOI
Thangaraj K. Ph.D. Thesis. Cardiff University; Cardiff, UK: Nov, 2017. Development of efficient energy storage and power management for autonomous aircraft structural health monitoring system.
Ross R.W. Integrated vehicle health management in aerospace structures. In: Yuan F.-G., editor. Structural Health Monitoring (SHM) in Aerospace Structures. Elsevier; Amsterdam, The Netherlands: 2016. pp. 3–31. DOI
Cawley P. Structural health monitoring: Closing the gap between research and industrial deployment. Struct. Health Monit. 2018;17:1225–1244. doi: 10.1177/1475921717750047. DOI
Abbas S., Li F., Qiu J. A Review on SHM Techniques and Current Challenges for Characteristic Investigation of Damage in Composite Material Components of Aviation Industry. Mater. Perform. Charact. 2018;7:20170167. doi: 10.1520/MPC20170167. DOI
Qing X., Li W., Wang Y., Sun H. Piezoelectric transducer-based structural health monitoring for aircraft applications. Sensors. 2019;19:545. doi: 10.3390/s19030545. PubMed DOI PMC
Dong T., Kim N.H. Cost-effectiveness of structural health monitoring in fuselage maintenance of the civil aviation industry. Aerospace. 2018;5:87. doi: 10.3390/aerospace5030087. DOI
Pearson M.R., Eaton M.J., Pullin R., Featherston C.A., Holford K.M. Energy Harvesting for Aerospace Structural Health Monitoring Systems. J. Phys. Conf. Ser. 2012;382:012025. doi: 10.1088/1742-6596/382/1/012025. DOI
Memorandum of Understanding for the Implementation of the COST Action “Optimising Design for Inspection” (ODIN) CA 18203. COST Association; Brussels, Belgium: 2019. [(accessed on 22 September 2020)]. Available online: http://odin-cost.com/
Papasalouros D., Tsopelas N., Anastasopoulos A., Kourosis D., Lekou D.J., Mouzakis F. Acoustic Emission Monitoring of Composite Blade of NM48 / 750 NEG—MICON Wind Turbine. J. Acoust. Emiss. 2013;31:36–49.
Hill E., Rovik C. In-Flight Fatigue Crack Growth Monitoring in a Cessna T-303 Crusader Vertical Tail. J. Acoust. Emiss. 2013;31:19–35.
Holford K.M., Pullin R., Evans S.L., Eaton M.J., Hensman J., Worden K. Acoustic emission for monitoring aircraft structures. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2009;223:525–532. doi: 10.1243/09544100JAERO404. DOI
Zhao X., Gao H., Zhang G., Ayhan B., Yan F., Kwan C., Rose J.L. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring. Smart Mater. Struct. 2007;16:1208–1217. doi: 10.1088/0964-1726/16/4/032. DOI
Mei H., Haider M.F., Joseph R., Migot A., Giurgiutiu V. Recent advances in piezoelectric wafer active sensors for structural health monitoring applications. Sensors. 2019;19:383. doi: 10.3390/s19020383. PubMed DOI PMC
Ren B., Lissenden C.J. PVDF multielement lamb wave sensor for structural health monitoring. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2016;63:178–185. doi: 10.1109/TUFFC.2015.2496423. PubMed DOI
Holst C.A., Lohweg V., Röckemann K., Steinmetz A. Lamb Wave-based Quality Inspection of Repaired Carbon Fibre Reinforced Polymers for On-Site Aircraft Maintenance; Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation; Zaragoza, Spain. 10–13 September 2019; pp. 1643–1646. DOI
Memmolo V., Monaco E., Boffa N.D., Maio L., Ricci F. Guided wave propagation and scattering for structural health monitoring of stiffened composites. Compos. Struct. 2018;184:568–580. doi: 10.1016/j.compstruct.2017.09.067. DOI
Derriso M.M., McCurry C.D., Schubert Kabban C.M. A novel approach for implementing structural health monitoring systems for aerospace structures. In: Yuan F.-G., editor. Structural Health Monitoring (SHM) in Aerospace Structures. Elsevier; Amsterdam, The Netherlands: 2016. pp. 33–56. DOI
Yu L., Tian Z. Phased array techniques for damage detection in aerospace structures. In: Yuan F.-G., editor. Structural Health Monitoring (SHM) in Aerospace Structures. Elsevier; Amsterdam, The Netherlands: 2016. pp. 285–306. DOI
Su Z., Hong M. Nonlinear ultrasonics for health monitoring of aerospace structures using active sparse sensor networks. In: Yuan F.-G., editor. Structural Health Monitoring (SHM) in Aerospace Structures. Elsevier; Amsterdam, The Netherlands: 2016. pp. 353–392. DOI
Hill K.O., Meltz G. Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 1997;15:1263–1276. doi: 10.1109/50.618320. DOI
Kahandawa G.C., Epaarachchi J., Wang H., Lau K.T. Use of FBG sensors for SHM in aerospace structures. Photonic Sens. 2012;2:203–214. doi: 10.1007/s13320-012-0065-4. DOI
Cusano A., Capoluongo P., Campopiano S., Cutolo A., Giordano M., Felli F., Paolazzi A., Caponero M. Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors. IEEE Sens. J. 2006;6:67–77. doi: 10.1109/JSEN.2005.854152. DOI
Gao Z., Zhu X., Fang Y., Zhang H. Active monitoring and vibration control of smart structure aircraft based on FBG sensors and PZT actuators. Aerosp. Sci. Technol. 2017;63:101–109. doi: 10.1016/j.ast.2016.12.027. DOI
Choi Y., Abbas S.H., Lee J.-R. Aircraft integrated structural health monitoring using lasers, piezoelectricity, and fiber optics. Measurement. 2018;125:294–302. doi: 10.1016/j.measurement.2018.04.067. DOI
Di Sante R. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications. Sensors. 2015;15:18666–18713. doi: 10.3390/s150818666. PubMed DOI PMC
Na W.S., Baek J. Piezoelectric impedance-based non-destructive testing method for possible identification of composite debonding depth. Micromachines. 2019;10:621. doi: 10.3390/mi10090621. PubMed DOI PMC
Soh C.K., Lim Y.Y. Fatigue damage diagnosis and prognosis using electromechanical impedance technique. In: Yuan F.-G., editor. Structural Health Monitoring (SHM) in Aerospace Structures. Elsevier; Amsterdam, The Netherlands: 2016. pp. 429–446. DOI
Ksica F., Hadas Z., Hlinka J. Integration and test of piezocomposite sensors for structure health monitoring in aerospace. Measurement. 2019;147:106861. doi: 10.1016/j.measurement.2019.106861. DOI
Qiu L., Deng X., Yuan S., Huang Y., Ren Y. Impact Monitoring for Aircraft Smart Composite Skins Based on a Lightweight Sensor Network and Characteristic Digital Sequences. Sensors. 2018;18:2218. doi: 10.3390/s18072218. PubMed DOI PMC
Wang Y., Qiu L., Luo Y., Ding R. A stretchable and large-scale guided wave sensor network for aircraft smart skin of structural health monitoring. Struct. Health Monit. 2019 doi: 10.1177/1475921719850641. DOI
Gljušćić P., Zelenika S., Blažević D., Kamenar E. Kinetic Energy Harvesting for Wearable Medical Sensors. Sensors. 2019;19:4922. doi: 10.3390/s19224922. PubMed DOI PMC
Technical Characteristics and Spectrum Requirements of Wireless Avionics Intra-Communications System to Support their Safe Operation—M Series: Mobile, Radiodetermination, Amateur and Related satellite Services. International Telecommunication Union—Radiocommunication Sector (ITU-R); Geneva, Switzerland: 2014. Report ITU-R M.2283-0.
SC-236 Standards for Wireless Avionics Intra-Communication System (WAIC) within 4200-4400 MHz. [(accessed on 26 July 2020)]; Available online: https://www.rtca.org/content/sc-236.
Fang K., Liu C., Teng J. Cluster-based optimal wireless sensor deployment for structural health monitoring. Struct. Health Monit. 2018;17:266–278. doi: 10.1177/1475921717689967. DOI
Kazmierski T.J., Beeby S., editors. Energy Harvesting Systems: Principles Modeling and Applications. Springer; New York, NY, USA: 2011. DOI
Priya S., Inman D.J., editors. Energy Harvesting Technologies. Springer; New York, NY, USA: 2009. DOI
Somà A., De Pasquale G. Electro-mechanical coupled design of self-powered sensing systems and performances comparison through experiments. Frattura ed Integrità Strutturale. 2013;23:94–102. doi: 10.3221/IGF-ESIS.23.10. DOI
Tan Y.K. Energy Harvesting Autonomous Sensor Systems: Design, Analysis, and Practical Implementation. CRC Press; Boca Raton, IL, USA: 2013.
Guidelines for Implementation of Structural Health Monitoring on Fixed Wing Aircraft . Aerospace Industry Steering Committee on Structural Health. SAE International; Warrendale, PA, USA: 2013. DOI
Bashir M., Rajendran P., Khan S.A. Energy Harvesting from Aerodynamic Instabilities: Current Prospect and Future Trends. IOP Conf. Ser. Mat. Sci. 2018;290:012054. doi: 10.1088/1757-899X/290/1/012054. DOI
Le M.Q., Capsal J.-F., Lallart M., Hebrard Y., Van Der Ham A., Reffe N., Geynet L., Cottinet P.-J. Review on energy harvesting for structural health monitoring in aeronautical applications. Progr. Aerosp. Sci. 2015;79:147–157. doi: 10.1016/j.paerosci.2015.10.001. DOI
Vankecke C., Assouère L., Wang A., Durand-Estèbe P., Caignet F., Dilhac J.M., Bafleur M. Multisource and battery-free energy harvesting architecture for aeronautics applications. IEEE Trans. Power Electron. 2015;30:3215–3227. doi: 10.1109/TPEL.2014.2331365. DOI
Arms S.W., Galbreath J.H., Townsend C.P., Churchill D.L., Corneau B., Ketcham R.P., Phan N. Energy harvesting wireless sensors and networked timing synchronization for aircraft structural health monitoring; Proceedings of the 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology; Aalborg, Denmark. 17–20 May 2009; DOI
Tang X., Wang X., Cattley R., Gu F., Ball A.D. Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A Review. Sensors. 2018;18:4113. doi: 10.3390/s18124113. PubMed DOI PMC
Sundriyal P., Bhattacharya S. Energy harvesting techniques for powering wireless sensor networks in aircraft applications: A review. In: Bhattacharya S., Agarwal A., Prakash O., Singh S., editors. Sensors for Automotive and Aerospace Applications. Springer; Berlin, Germany: 2019. pp. 55–76. DOI
Wood O.J., Featherston C.A., Kennedy D., Eaton M., Pullin R. Optimised Vibration Energy Harvesting for Aerospace Applications. Key Eng. Mater. 2012;518:246–260. doi: 10.4028/www.scientific.net/KEM.518.246. DOI
Boisseau S., Despesse G., Seddik B.A. Electrostatic Conversion for Vibration Energy Harvesting. In: Lallart M., editor. Small-Scale Energy Harvesting. InTech; London, UK: 2012. DOI
Wang Z., Lin L., Chen J., Niu S., Zi Y. Triboelectric Nanogenerators. Springer Nature; Cham, Switzerland: 2016. DOI
Wei C., Jing X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energy Rev. 2017;74:1–18. doi: 10.1016/j.rser.2017.01.073. DOI
Williams C.B., Yates R.B. Analysis of a micro-electric generator for microsystems. Sens. Actuators A-Phys. 1996;52:8–11. doi: 10.1016/0924-4247(96)80118-X. DOI
Hadas Z., Ondrusek C., Singule V. Power sensitivity of vibration energy harvester. Microsyst. Tecnol. 2010;16:691–702. doi: 10.1007/s00542-010-1046-4. DOI
Akbar M., Curiel-Sosa J.L. Piezoelectric energy harvester composite under dynamic bending with implementation to aircraft wingbox structure. Compos. Struct. 2016;153:193–203. doi: 10.1016/j.compstruct.2016.06.010. DOI
Lee S., Youn B.D. A new piezoelectric energy harvesting design concept: Multimodal energy harvesting skin. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011;58:629–645. doi: 10.1109/TUFFC.2011.5733266. PubMed DOI
Bowen C.R., Kim H.A., Weaver P.M., Dunn S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 2014;7:25–44. doi: 10.1039/C3EE42454E. DOI
Ambrosio R., Jimenez A., Mireles J., Moreno M., Monfil K., Heredia H. Study of Piezoelectric Energy Harvesting System Based on PZT. Integr. Ferroelectr. 2011;126:77–86. doi: 10.1080/10584587.2011.574989. DOI
James E.P., Tudor M.J., Beeby S.P., Harris N.R., Glynne-Jones P., Ross J.N., White N.M. An investigation of self-powered systems for condition monitoring applications. Sens. Actuators A-Phys. 2004;110:171–176. doi: 10.1016/j.sna.2003.10.057. DOI
Hadas Z., Smilek J., Rubes O. Analyses of electromagnetic and piezoelectric systems for efficient vibration energy harvesting. In: Fonseca L., Prunnila M., Peiner E., editors. Smart Sensors, Actuators, and MEMS VIII, Proc SPIE Microtechnologies. SPIE; Bellingham, WA, USA: 2017. DOI
Khaligh A. Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art. IEEE Trans. Ind. Electron. 2010;57:850–860. doi: 10.1109/TIE.2009.2024652. DOI
Kim S., Vyas R., Bito J., Niotaki K., Collado A., Georgiadis A., Tentzeris M.M. Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms. Proc. IEEE. 2014;102:1649–1666. doi: 10.1109/JPROC.2014.2357031. DOI
Beeby S., White N., editors. Energy Harvesting for Autonomous Systems. Artech House; Norwood, MA, USA: 2010.
Basseville M., Benveniste A., Goursat M., Meve L. In-Flight Vibration Monitoring of Aeronautical Structures. IEEE Control Syst. Mag. 2007;27:27–42. doi: 10.1109/MCS.2007.904652. DOI
Hadas Z., Vetiska V., Vetiska J., Krejsa J. Analysis and efficiency measurement of electromagnetic vibration energy harvesting system. Microsyst. Technol. 2016;22:1767–1779. doi: 10.1007/s00542-016-2832-4. DOI
Dunno K., Batt G. Analysis of in-flight vibration of a twin-engine turbo propeller aircraft. Packag. Technol. Sci. 2009;22:479–485. doi: 10.1002/pts.872. DOI
Pearson M., Featherston C.A., Pullin R., Holford K.M. Optimized Placement of Parasitic Vibration Energy Harvesters for Autonomous Structural Health Monitoring. J. Intell. Mater. Syst. Struct. 2020;31:1403–1415. doi: 10.1177/1045389X20922907. DOI
Caliò R., Rongala U.B., Camboni D., Milazzo M., Stefanini C., De Petris G., Oddo C.M. Piezoelectric Energy Harvesting Solutions. Sensors. 2014;14:4755–4790. doi: 10.3390/s140304755. PubMed DOI PMC
Dhakar L., Liu H., Tay F.E.H., Lee C. A new energy harvester design for high power output at low frequencies. Sens. Actuators A Phys. 2013;199:344–352. doi: 10.1016/j.sna.2013.06.009. DOI
Du S., Jia Y., Zhao C., Amaratunga G.A.J., Seshia A.A. A Nail-size Piezoelectric Energy Harvesting System Integrating a MEMS Transducer and a CMOS Interface Circuit. IEEE Sens. J. 2020;20:277–285. doi: 10.1109/JSEN.2019.2941180. DOI
Aboulfotoh N.A., Arafa M.H., Megahed S.M. A self-tuning resonator for vibration energy harvesting. Sens. Actuators A Phys. 2013;201:328–334. doi: 10.1016/j.sna.2013.07.030. DOI
Xu Z., Shan X., Chen D., Xie T. A Novel Tunable Multi-Frequency Hybrid Vibration Energy Harvester Using Piezoelectric and Electromagnetic Conversion Mechanisms. Appl. Sci. 2016;6:10. doi: 10.3390/app6010010. DOI
Soliman M.S.M., Abdel-Rahman E.M., El-Saadany E.F., Mansour R.R. A wideband vibration-based energy harvester. J. Micromech. Microeng. 2008;18:115021. doi: 10.1088/0960-1317/18/11/115021. DOI
Barton D.A.W., Burrow S.G., Clare L.R. Energy Harvesting From Vibrations with a Nonlinear Oscillator. J. Vib. Acoust. 2010;132:021009. doi: 10.1115/1.4000809. DOI
Cottone F., Vocca H., Gammaitoni L. Nonlinear Energy Harvesting. Phys. Rev. Lett. 2009;102:080601. doi: 10.1103/PhysRevLett.102.080601. PubMed DOI
Rubes O., Brablc M., Hadas Z. Verified nonlinear model of piezoelectric energy harvester; Proceedings of the 14th International Conference on Vibration Engineering and Technology of Machinery (VETOMAC XIV); Lisbon, Portugal. 10–13 September 2018; DOI
Sebald G., Kuwano H., Guyomar D., Ducharne B. Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 2011;20:075022. doi: 10.1088/0964-1726/20/7/075022. DOI
Benasciutti D., Moro L., Zelenika S., Brusa E. Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst. Technol. 2009;16:657–668. doi: 10.1007/s00542-009-1000-5. DOI
Shahruz S.M. Limits of performance of mechanical band-pass filters used in energy scavenging. J. Sound. Vib. 2006;293:449–461. doi: 10.1016/j.jsv.2005.09.022. DOI
Gljušćić P., Zelenika S. Assessment of performances of optimized piezoelectric energy harvesters for wearables; Proceedings of the 20th EUSPEN International Conference; Geneva, Switzerland. 8–11 June 2020; pp. 49–52.
Yang Z., Wang Y.Q., Zuo L., Zu J. Introducing arc-shaped piezoelectric elements into energy harvesters. Energy Convers. Manag. 2017;148:260–266. doi: 10.1016/j.enconman.2017.05.073. DOI
Erturk A., Inman D.J. Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound. Vib. 2011;330:2339–2353. doi: 10.1016/j.jsv.2010.11.018. DOI
Harne R.L., Wang K.W. A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 2013;22:023001. doi: 10.1088/0964-1726/22/2/023001. DOI
Pellegrini S.P., Tolou N., Schenk M., Herder J.L. Bistable vibration energy harvesters: A review. J. Intell. Mater. Syst. Struct. 2013;24:1303–1312. doi: 10.1177/1045389X12444940. DOI
Vocca H., Neri I., Travasso F., Gammaitoni L. Kinetic energy harvesting with bistable oscillators. Appl. Energy. 2012;97:771–776. doi: 10.1016/j.apenergy.2011.12.087. DOI
Zheng R., Nakano K., Hu H., Su D., Cartmell M.P. An application of stochastic resonance for energy harvesting in a bistable vibrating system. J. Sound. Vib. 2014;333:2568–2587. doi: 10.1016/j.jsv.2014.01.020. DOI
Leng Y.G., Gao Y.J., Tan D., Fan S.B., Lai Z.H. An elastic-support model for enhanced bistable piezoelectric energy harvesting from random vibrations. J. Appl. Phys. 2015;117:064901. doi: 10.1063/1.4907763. DOI
Rubes O., Hadas Z. Design and Simulation of Bistable Piezoceramic Cantilever for Energy Harvesting from Slow Swinging Movement; Proceedings of the IEEE 18th International Power Electronics and Motion Control Conference; Budapest, Hungary. 26–30 August 2018; pp. 663–668. DOI
Stanton S.C., McGehee C.C., Mann B.P. Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Phys. D. 2010;239:640–653. doi: 10.1016/j.physd.2010.01.019. DOI
Pozzi M., Guo S., Zhu M. Harvesting energy from the dynamic deformation of an aircraft wing under gust loading; Proceedings of the SPIE 8348: Health Monitoring of Structural and Biological Systems; San Diego, CA, USA. 12–15 April 2012; 834831. DOI
Pozzi M., Almond H.J.A., Leighton G.J.T., Moriarty R.J. Low-profile and wearable energy harvester based on plucked piezoelectric cantilevers; Proceedings of the SPIE 9517: Smart Sensors, Actuators, and MEMS and Cyber Physical Systems; Barcelona, Spain. 21 May 2015; 951706. DOI
Cavallier B., Berthelot P., Nouira H., Foltete E., Hirsinger L., Ballandras S. Energy harvesting using vibrating structures excited by shock; Proceedings of the IEEE Ultrasonics Symposium; Piscataway, NJ, USA. 18–21 September 2005; pp. 943–945. DOI
Kuang Y., Zhu M. Design study of a mechanically plucked piezoelectric energy harvester using validated finite element modelling. Sens. Actuators A-Phys. 2017;263:510–520. doi: 10.1016/j.sna.2017.07.009. DOI
Kamenar E., Zelenika S., Blažević D., Maćešić S., Gregov G., Marković K., Glažar V. Harvesting of river flow energy for wireless sensor network technology. Microsyst. Technol. 2016;22:1557–1574. doi: 10.1007/s00542-015-2778-y. DOI
CEDRAT TECHNOLOGIES: Amplified Piezo Actuators. [(accessed on 5 August 2020)]; Available online: https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html.
Jiang X., Li Y., Li J., Wang J., Yao J. Piezoelectric energy harvesting from traffic-induced pavement vibrations. J. Renew. Sustain. Energy. 2014;6:043110. doi: 10.1063/1.4891169. DOI
Xu C., Ren B., Di W., Liang Z., Jiao J., Li L., Zhao X., Luo H., Wang D. Cantilever driving low frequency piezoelectric energy harvester using single crystal material 0.71Pb(Mg1/3 Nb2/3)O3-0.29PbTiO3. Appl. Phys. Lett. 2012;101:033502. doi: 10.1063/1.4737170. DOI
Yang Z., Zu J., Luo J., Peng Y. Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 2017;28:357–366. doi: 10.1177/1045389X16642536. DOI
Beeby S.P., Torah R.N., Tudor M.J., Glynne-Jones P., O’Donnell T., Saha C.R., Roy S. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 2007;17:1257. doi: 10.1088/0960-1317/17/7/007. DOI
Hadas Z., Kluge M., Singule V., Ondrusek C. Electromagnetic Vibration Power Generator; Proceedings of the IEEE Int Sym Diagnostics for Electric Machines, Power Electronics and Drives; Cracow, Poland. 6–8 September 2007; pp. 451–455. DOI
Hadas Z., Zouhar J., Singule V., Ondrusek C. Design of energy harvesting generator base on rapid prototyping parts; Proceedings of the IEEE 13th International Power Electronics and Motion Control Conference; Poznan, Poland. 1–3 September 2008; pp. 1665–1669. DOI
Hadas Z., Vetiska V., Huzlik R., Singule V. Model-based design and test of vibration energy harvester for aircraft application. Microsyst. Tecnol. 2014;20:831–843. doi: 10.1007/s00542-013-2062-y. DOI
Rubes O., Smilek J., Hadas Z. Development of vibration energy harvester fabricated by rapid prototyping technology; Proceedings of the IEEE 16th International Conference on Mechatronics—Mechatronika; Brno, Czech Republic. 3–5 December 2014; pp. 178–182. DOI
Churchill D.L., DiStasi S., Frattini T., Wells D.M. Development of a helicopter on-rotor hum system powered by vibration energy harvesting; Proceedings of the IEEE 40th European Rotorcraft Forum; Southampton, UK. 2–5 September 2014; pp. 988–1001.
Cepnik C., Lausecker R., Wallrabe U. Review on Electrodynamic Energy Harvesters—A Classification Approach. Micromachines. 2013;4:168–196. doi: 10.3390/mi4020168. DOI
Kaleta J., Kot K., Mech R., Wiewiorski P. The Use of Magnetostrictive Cores for the Vibrations Generation and Energy Harvesting from Vibration, in the Selected Frequencies of Work. Key Eng. Mater. 2014;598:75–80. doi: 10.4028/www.scientific.net/KEM.598.75. DOI
Wang L., Yuan F.G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008;17:045009. doi: 10.1088/0964-1726/17/4/045009. DOI
Zucca M., Bottauscio O. Hysteretic Modeling of Electrical Micro-Power Generators Based on Villari Effect. IEEE Trans. Magn. 2012;48:3092–3095. doi: 10.1109/TMAG.2012.2206373. DOI
Davino D., Giustiniani A., Visone C., Adly A. Experimental analysis of vibrations damping due to magnetostrictive based energy harvesting. J. Appl. Phys. 2011;109:07E509. doi: 10.1063/1.3545798. DOI
Ueno T., Yamada S. Performance of Energy Harvester Using Iron–Gallium Alloy in Free Vibration. IEEE Trans. Magn. 2011;47:2407–2409. doi: 10.1109/TMAG.2011.2158303. DOI
Xie H., Huang Z., Guo S., Torru E. Feasibility of an Electrostatic Energy Harvesting Device for CFCs Aircraft. Procedia Eng. 2015;99:1213–1222. doi: 10.1016/j.proeng.2014.12.650. DOI
Kiziroglou M.E., Becker T., Yeatman E.M., Schmid U., Evans J.W., Wright P.K. Comparison of methods for static charge energy harvesting on aircraft. In: Fonseca L., Prunnila M., Peiner E., editors. Smart Sensors, Actuators, and MEMS VIII, Proc SPIE Microtechnologies. SPIE; Bellingham, WA, USA: 2017. DOI
Zi Y., Niu S., Wang J., Wen Z., Tang W., Wang Z.L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015;6:8376. doi: 10.1038/ncomms9376. PubMed DOI PMC
Chen J., Zhu G., Yang W., Jing Q., Bai P., Yang Y., Hou T.-C., Wang Z.L. Harmonic-Resonator-Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self-Powered Active Vibration Sensor. Adv. Mater. 2013;25:6094–6099. doi: 10.1002/adma.201302397. PubMed DOI
Wen X., Yang W., Jing Q., Wang Z.L. Harvesting Broadband Kinetic Impact Energy from Mechanical Triggering/Vibration and Water Waves. ACS Nano. 2014;8:7405–7412. doi: 10.1021/nn502618f. PubMed DOI
Yang W., Chen J., Jing Q., Yang J., Wen X., Su Y., Zhu G., Bai P., Wang Z.L. 3D Stack Integrated Triboelectric Nanogenerator for Harvesting Vibration Energy. Adv. Funct. Mater. 2014;24:4090–4096. doi: 10.1002/adfm.201304211. DOI
Zhang L., Jin L., Zhang B., Deng W., Pan H., Tang J., Zhu M., Yang W. Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy. Nano. Energy. 2015;16:516–523. doi: 10.1016/j.nanoen.2015.06.012. DOI
Dagdeviren C., Joe P., Tuzman O.L., Park K.-I., Lee K.J., Shi Y., Huang Y., Rogers J.A. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extrem Mech. Lett. 2016;9:269–281. doi: 10.1016/j.eml.2016.05.015. DOI
Arrieta A.F., Hagedorn P., Erturk A., Inman D.J. A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 2010;97:104102. doi: 10.1063/1.3487780. DOI
Hadas Z., Ksica F., Rubes O. Piezoceramic patches for energy harvesting and sensing purposes. Eur. Phys. J. Spec. Top. 2019;228:1589–1604. doi: 10.1140/epjst/e2019-800156-6. DOI
Erturk A. Piezoelectric energy harvesting for civil infrastructure system applications: Moving loads and surface strain fluctuations. J. Intell. Mater. Syst. Struct. 2011;22:1959–1973. doi: 10.1177/1045389X11420593. DOI
Saporito M., Da Ronch A. Aeroelastic energy harvesting from statistically representative gust encounters. J. Fluids Struct. 2020;94:102869. doi: 10.1016/j.jfluidstructs.2020.102869. DOI
Matt H.M., di Scalea F.L. Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures. Smart Mater. Struct. 2007;16:1489–1499. doi: 10.1088/0964-1726/16/4/064. DOI
Kovalovs A., Barkanov E., Gluhihs S. Active control of structures using macro-fiber composite (MFC) J. Phys. Conf. Ser. 2007;93:012034. doi: 10.1088/1742-6596/93/1/012034. DOI
Yang Y., Tang L., Li H. Vibration energy harvesting using macro-fiber composites. Smart Mater. Struct. 2009;18:115025. doi: 10.1088/0964-1726/18/11/115025. DOI
Ksica F., Behal J., Rubes O., Hadas Z. Homogenized Model of Piezoelectric Composite Structure for Sensing Purposes. In: Szewczyk R., Krejsa J., Nowicki M., Ostaszewska-Lizewska A., editors. Advances in Intelligent Systems and Computing―Vol. 1044, Proc Mechatronics 2019: Recent Advances towards Industry 4.0. Springer Nature; London, UK: 2020. pp. 358–365. DOI
Nielsen B.B., Nielsen M.S., Santos I.F. A layered shell containing patches of piezoelectric fibers and interdigitated electrodes: Finite element modeling and experimental validation. J. Intell. Mater. Syst. Struct. 2017;28:78–96. doi: 10.1177/1045389X16642537. DOI
Featherston C.A., Holford K.M., Greaves B. Harvesting Vibration Energy for Structural Health Monitoring in Aircraft. Key Eng. Mater. 2009;413–414:439–446. doi: 10.4028/www.scientific.net/KEM.413-414.439. DOI
Takezawa A., Kitamura M., Vatanabe S.L., Silva E.C.N. Design methodology of piezoelectric energy-harvesting skin using topology optimization. Struct. Multidiscip. Optim. 2014;49:281–297. doi: 10.1007/s00158-013-0974-x. DOI
Sappati K.K., Bhadra S. Piezoelectric polymer and paper substrates: A review. Sensors. 2018;18:3605. doi: 10.3390/s18113605. PubMed DOI PMC
Fan F.R., Tang W., Wang Z.L. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. Adv. Mater. 2016;28:4283–4305. doi: 10.1002/adma.201504299. PubMed DOI
Zhang X., Wu L., Sessler G.M. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets. AIP Adv. 2015;5:077185. doi: 10.1063/1.4928039. DOI
Mrlík M., Leadenham S., AlMaadeed M.A., Erturk A. Figure of merit comparison of PP-based electret and PVDF-based piezoelectric polymer energy harvesters; Proceedings of the SPIE 9799: Active and Passive Smart Structures and Integrated Systems; Las Vegas, NE, USA. 20–24 March 2016; 979923. DOI
Karan S.K., Bera R., Paria S., Das A.K., Maiti S., Maitra A., Khatua B. An Approach to Design Highly Durable Piezoelectric Nanogenerator Based on Self-Poled PVDF/AlO-rGO Flexible Nanocomposite with High Power Density and Energy Conversion Efficiency. Adv. Energy Mater. 2016;6:1601016. doi: 10.1002/aenm.201601016. DOI
Layek R.K., Samanta S., Chatterjee D.P., Nandi A.K. Physical and mechanical properties of poly(methyl methacrylate) -functionalized graphene/poly(vinylidine fluoride) nanocomposites: Piezoelectric β polymorph formation. Polymer. 2010;51:5846–5856. doi: 10.1016/j.polymer.2010.09.067. DOI
Fang K.Y., Fang F., Wang S.W., Yang W., Sun W., Li J.F. Hybridizing CNT/PMMA/PVDF towards high-performance piezoelectric nanofibers. J. Phys. D Appl. Phys. 2018;51:265305. doi: 10.1088/1361-6463/aac600. DOI
Xu D., Zhang H., Pu L., Li L. Fabrication of Poly(vinylidene fluoride)/Multiwalled carbon nanotube nanocomposite foam via supercritical fluid carbon dioxide: Synergistic enhancement of piezoelectric and mechanical properties. Compos. Sci. Technol. 2020;192:108108. doi: 10.1016/j.compscitech.2020.108108. DOI
Chew Z.J., Ruan T., Zhu M. Strain Energy Harvesting Powered Wireless Sensor Node for Aircraft Structural Health Monitoring. Procedia Eng. 2016;168:1717–1720. doi: 10.1016/j.proeng.2016.11.498. DOI
Shi Y., Hallett S.R., Zhu M. Energy harvesting behaviour for aircraft composites structures using macro-fibre composite: Part I—Integration and experiment. Compos. Struct. 2017;160:1279–1286. doi: 10.1016/j.compstruct.2016.11.037. DOI
Meyer Y., Lachat R., Akhras G. A review of manufacturing techniques of smart composite structures with embedded bulk piezoelectric transducers. Smart. Mater. Struct. 2019;28:053001. doi: 10.1088/1361-665X/ab0fab. DOI
Roundy S. On the Effectiveness of Vibration-based Energy Harvesting. J. Intell. Mater. Syst. Struct. 2005;16:809–823. doi: 10.1177/1045389X05054042. DOI
Najafi K., Galchev T., Aktakka E.E., Peterson R.L., McCullagh J. Microsystems for energy harvesting; Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS’11); Beijing, China. 5–9 June 2011; pp. 1845–1850. DOI
Ruan J.J., Lockhart R.A., Janphuang P., Quintero A.V., Briand D., De Rooij N. An automatic test bench for complete characterization of vibration-energy harvesters. IEEE Trans. Instrum. Meas. 2013;62:2966–2973. doi: 10.1109/TIM.2013.2265452. DOI
Mallick D., Amann A., Roy S. Interplay between electrical and mechanical domains in a high performance nonlinear energy harvester. Smart Mater. Struct. 2015;24:122001. doi: 10.1088/0964-1726/24/12/122001. DOI
Freer R., Powell A.V. Realising the potential of thermoelectric technology: A Roadmap. J. Mater. Chem. C. 2020;8:441–463. doi: 10.1039/C9TC05710B. DOI
Rowe D.M., editor. CRC Handbook of Thermoelectrics. CRC Press; Boca Raton, FL, USA: 1995.
Snyder G.J., Toberer E.S. Complex thermoelectric materials. Nat. Mater. 2008;7:105–114. doi: 10.1038/nmat2090. PubMed DOI
El-Desouky A., Carter M., Mahmoudi M., Elwany A., LeBlanc S. Influences of energy density on microstructure and consolidation of selective laser melted bismuth telluride thermoelectric powder. J. Manuf. Process. 2017;25:411–417. doi: 10.1016/j.jmapro.2016.12.008. DOI
Zhang X., Zhao L.-D. Thermoelectric materials: Energy conversion between heat and electricity. J. Mater. 2015;1:92–105. doi: 10.1016/j.jmat.2015.01.001. DOI
Han C., Li Z., Dou S. Recent progress in thermoelectric materials. Chin. Sci. Bull. 2014;59:2073–2091. doi: 10.1007/s11434-014-0237-2. DOI
Elefsiniotis A. Doctoral Dissertation. Vienna University of Technology; Vienna, Austria: 2015. Energy Harvesting Modules for Aircraft Specific Wireless Sensor Nodes.
Becker T., Elefsiniotis A., Kiziroglou M.E. Thermoelectric Energy Harvesting in Aircraft. In: Briand D., Yeatman E., Roundy S., editors. Micro Energy Harvesting. Wiley-VCH Verlag; Weinheim, Germany: 2015. pp. 415–434. DOI
González C., Homero J. Master’s Thesis. Technical University of Hamburg; Hamburg, Germany: 2013. Conduction of Profitability Analyses in Research and Development Projects.
Kowalewski P. Master’s Thesis. Fachhochschule Wedel; Wedel, Germany: 2012. Cost-Benefit Analysis of Wireless Sensor Networks and Energy Harvesting.
Ziolkowski P., Zabrocki K., Müller E. TEG Design for Waste Heat Recovery at an Aviation Jet Engine Nozzle. Appl. Sci. 2018;8:2637. doi: 10.3390/app8122637. DOI
Ahmidina S.S.A., Sakri F.M., Sarip A.R.M. Harvesting Energy from an Exhaust System using High Temperature Thermoelectric Material. Test. Eng. Manag. 2020;82:1997–2002.
Bode C., Friedrichs J., Somdalen R., Köhler J., Büchter K.-D., Falter C., Kling U., Ziolkowski P., Zabrocki K., Müller E., et al. Potential of future thermoelectric energy recuperation for aviation. J. Eng. Gas. Turb. Power. 2017;139:101201. doi: 10.1115/1.4036527. DOI
Elefsiniotis A., Kokorakis N., Becker T., Schmid U. A Novel High-temperature Aircraft-specific Energy Harvester Using PCMs and State of the art TEGs. Mater. Today-Proc. 2015;2:814–822. doi: 10.1016/j.matpr.2015.05.105. DOI
Janak L., Ancik Z., Vetiska J., Hadas Z. Thermoelectric Generator Based on MEMS Module as an Electric Power Backup in Aerospace Applications. Mater. Today. 2015;2:865–870. doi: 10.1016/j.matpr.2015.05.112. DOI
Han X.-Y., Wang J., Cheng H.-F. Investigation of thermoelectric SiC ceramics for energy harvesting applications on supersonic vehicles leading-edges. Bull. Mater. Sci. 2014;37:127–132. doi: 10.1007/s12034-014-0613-1. DOI
Langley J., Taylor M., Wagner G., Morris S. Thermoelectric Energy Harvesting from Small Aircraft Engines. SAE Int. Tech. Paper. 2009 doi: 10.4271/2009-01-3093. DOI
Becker T., Kluge M., Schalk J., Otterpohl T., Hilleringmann U. Power Management for Thermal Energy Harvesting in Aircrafts; Proceedings of the IEEE Sensors Conference; Lecce, Italy. 26–29 October 2008; pp. 681–684. DOI
Featherston C.A., Holford K.M., Waring G. Thermoelectric Energy Harvesting for Wireless Sensor Systems in Aircraft. Key Eng. Mater. 2009;413–414:487–494. doi: 10.4028/www.scientific.net/KEM.413-414.487. DOI
Lyras M., Zymaride L., Kyratsi T., Louca L.S., Becker T. Simulation based design of a thermoelectric energy harvesting device for aircraft applications; Proceedings of the ASME 2017 Dynamic Systems and Control Conf; Tysons, VA, USA. 11–13 October 2017; DOI
Samson D., Otterpohl T., Kluge M., Schmid U., Becker T. Aircraft-Specific Thermoelectric Generator Module. J. Electron. Mater. 2010;39:2092–2095. doi: 10.1007/s11664-009-0997-7. DOI
Samson D., Kluge M., Becker T., Schmid U. Energy Harvesting for Autonomous Wireless Sensor Nodes in Aircraft. Procedia Eng. 2010;5:1160–1163. doi: 10.1016/j.proeng.2010.09.317. DOI
Elefsiniotis A., Kiziroglou M.E., Wright S.W., Toh T.T., Mitcheson P.D., Becker T., Yeatman E.M., Schmid U. Performance evaluation of a thermoelectric energy harvesting device using various phase change materials. J. Phy. Conf. Ser. 2013;476:012020. doi: 10.1088/1742-6596/476/1/012020. DOI
Elefsiniotis A., Kokorakis N., Becker T., Schmid U. Performance of a low temperature energy harvesting device for powering wireless sensor nodes in aircrafts applications; Proceedings of the Transducers and Eurosensors XXVII: 17th International Conference on Solid-State Sensors, Actuators and Microsystems; Barcelona, Spain. 16–20 June 2013; pp. 2276–2279. DOI
Elefsiniotis A., Kokorakis N., Becker T., Schmid U. A thermoelectric-based energy harvesting module with extended operational temperature range for powering autonomous wireless sensor nodes in aircraft. Sens. Actuators A-Phys. 2014;206:159–164. doi: 10.1016/j.sna.2013.11.036. DOI
Kiziroglou M.E., Elefsiniotis A., Wright S.W., Toh T.T., Mitcheson P.D., Becker T., Yeatman E.M. Performance of phase change materials for heat storage thermoelectric harvesting. Appl. Phys. Lett. 2013;103:193902. doi: 10.1063/1.4829044. DOI
Samson D., Kluge M., Fuss T., Schmid U., Becker T. Flight Test Results of a Thermoelectric Energy Harvester for Aircraft. J. Electron. Mater. 2012;41:1134–1137. doi: 10.1007/s11664-012-1928-6. DOI
Elefsiniotis A., Samson D., Becker T., Schmid U. Investigation of the Performance of Thermoelectric Energy Harvesters Under Real Flight Conditions. J. Electron. Mater. 2013;42:2301–2305. doi: 10.1007/s11664-012-2411-0. DOI
Boccardi S., Iervolino O., Loisi G., Ciampa F., Meo M. A novel heatsink for thermo-electric power harvesting of structural health monitoring systems; Proceedings of the 11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance; Stanford, CA, USA. 12–14 September 2017; pp. 504–511.
Dilhac J.-M., Monthéard R., Bafleur M., Boitier V., Durand-Estebe P., Tounsi P. Implementation of Thermoelectric Generators in Airliners for Powering Battery-Free Wireless Sensor Networks. J. Electron. Mater. 2014;43:2444–2451. doi: 10.1007/s11664-014-3150-1. DOI
Samson D., Kluge M., Becker T., Schmid U. Energy harvesting for remote monitoring of aircraft seats. Sens. Lett. 2010;8:328–335. doi: 10.1166/sl.2010.1273. DOI
Romli F.I., Salim S.M. Preliminary Study of Passengers’ Body Heat Harvesting Potential in Commercial Transport Aircraft. Int. J. Eng. Appl. 2020;8:32–40. doi: 10.15866/irea.v8i1.18052. DOI
Romli F.I., Salim S.M. Factorial Study on Seated Aircraft Passengers’ Body Heat Harvesting. Int. J. Emerg. Trends Eng. Res. 2020;8:1309–1314. doi: 10.30534/ijeter/2020/60842020. DOI
Gljušćić P., Zelenika S., Kamenar E. Characterisation of Performances of Thermoelectric Generators for Energy Harvesting Applications; Proceedings of the 29th DAAAM International Symposium; Zadar, Croatia. 19–22 October 2018; pp. 25–30. DOI
Kiziroglou M.E., Becker T., Wright S.W., Yeatman E.M., Evans J.W., Wright P.K. 3D Printed Insulation for Dynamic Thermoelectric Harvesters with Encapsulated Phase Change Materials. IEEE Sens. Lett. 2017;1:5500404. doi: 10.1109/LSENS.2017.2720960. DOI
Boucher J.R. Sunrise, the World’s First Solar-Powered Airplane. J. Aircr. 1985;22:840–846. doi: 10.2514/3.45213. DOI
Zhu X., Guo Z., Hou Z. Solar-powered airplanes: A historical perspective and future challenges. Prog. Aeorsp. Sci. 2014;71:36–53. doi: 10.1016/j.paerosci.2014.06.003. DOI
Solar Impulse Foundation: Historic Flight. [(accessed on 23 July 2020)]; Available online: https://aroundtheworld.solarimpulse.com/
Ramirez-Diaz G., Nadal-Mora V., Piechocki J. Descriptive analysis of viability of fuel saving in commercial aircraft through the application of photovoltaic cells. Renew. Sustain. Energy Rev. 2015;51:138–152. doi: 10.1016/j.rser.2015.06.008. DOI
Liscouet-Hanke S., Shafiei A., Lopes L., Williamson S. Proof-of-concept analysis of a supplemental solar power system for aircraft. Aircr. Eng. Aerosp. Technol. 2018;90:1295–1304. doi: 10.1108/AEAT-08-2017-0189. DOI
National Renewable Energy Laboratory (NREL) Chart of the highest confirmed conversion efficiencies for research cells for a range of photovoltaic technologies, plotted from 1976 to the present. [(accessed on 27 July 2020)]; Available online: https://www.nrel.gov/pv/cell-efficiency.html.
Fazelpour F., Vafaeipour M., Rahbari O., Shirmohammadi R. Considerable parameters of using PV cells for solar-powered aircrafts. Renew. Sustain. Energy Rev. 2013;22:81–91. doi: 10.1016/j.rser.2013.01.016. DOI
Zhu X., Guo Z., Hou Z., Gao X., Zhang J. Parameter’s sensitivity analysis and design optimization of solar-powered airplanes. Aircr. Eng. Aerosp. Technol. 2016;88:550–560. doi: 10.1108/AEAT-11-2013-0199. DOI
Aglietti G.S., Redi S., Tantall A.R., Makvart T. High Altitude Electrical Power Generation. WSEAS Trans. Environ. Dev. 2008;4:1067–1077.
Leutenegger S., Jabas M., Siegwart R.Y. Solar Airplane Conceptual Design and Performance Estimation. J. Intell. Robot. Syst. 2011:545–561. doi: 10.1007/s10846-010-9484-x. DOI
Rajendran P., Smith H., Hazim bih Masral M. Modeling and Simulation of Solar Irradiance and Daylight Duration for a High-Power-Output Solar Module System. Appl. Mech. Mater. 2014;629:475–480. doi: 10.4028/www.scientific.net/AMM.629.475. DOI
Soyata T., Copeland L., Heinzelman W. RF Energy Harvesting for Embedded Systems: A Survey of Tradeoffs and Methodology. IEEE Circ. Syst. Mag. 2016;16:22–57. doi: 10.1109/MCAS.2015.2510198. DOI
Garcia M., Grano C., Fermi Guerrero J., Ambrosio R.C., Moreno M., Fermin Guerrero W., Mino G., Gonzales V.R. Modeling and simulation of a photovoltaic array for a fixed-wing unmanned aerial vehicle; Proceedings of the IEEE 43rd Photovoltaic Specialists Conference; Portland, OR, USA. 5–10 June 2016; pp. 2682–2687. DOI
Lou B., Wang G., Huang Z., Ye S. Preliminary design and performance analysis of a solar-powered unmanned seaplane. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019;233:5606–5617. doi: 10.1177/0954410019852572. DOI
Morton S., D’Sa R., Papanikolopoulos N. Solar powered UAV: Design and experiments; Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems; Hamburg, Germany. 28 September–2 October 2015; pp. 2460–2466. DOI
Nagata M., Baldwin E., Kim S., Taya M. Design of dye-sensitized solar cells integrated in composite panel subjected to bending. J. Compos. Mater. 2012;47:27–32. doi: 10.1177/0021998312459779. DOI
Chen X., Sun B., Dai C., Wang X. Wind energy harvesting using jet-edge flow oscillations. AIP Adv. 2018;8:095018. doi: 10.1063/1.5040929. DOI
Orrego S., Shoele K., Ruas A., Doran K., Caggiano B., Mittal R., Kang S.H. Harvesting ambient wind energy with an inverted piezoelectric flag. Appl. Energy. 2017;194:212–222. doi: 10.1016/j.apenergy.2017.03.016. DOI
Ahmad I., Hassan A., Anjum M.U., Malik S., Ali T. Ambient Acoustic Energy Harvesting using Two Connected Resonators with Piezoelement for Wireless Distributed Sensor Network. Acoust. Phys. 2019;65:471–475. doi: 10.1134/S1063771019050014. DOI
Yuan M., Cao Z., Luo J., Chou X. Recent Developments of Acoustic Energy Harvesting: A Review. Micromachines. 2019;10:48. doi: 10.3390/mi10010048. PubMed DOI PMC
Saad M.M.M., Mohd S.B., Zulkafli M.F. A Survey on the Use of Ram Air Turbine in Aircraft. AIP Conf. Proc. 2017;1831:020048. doi: 10.1063/1.4981189. DOI
Burton T., Jenkins N., Sharpe D., Bossanyi E. Wind Energy Handbook. 2nd ed. John Wiley & Sons, Ltd.; Chichester, UK: 2011.
Bryant M., Pizzonia M., Mehallow M., Garcia E. Energy harvesting for self-powered aerostructure actuation; Proceedings of the SPIE Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, Proc SPIE 9057: Active and Passive Smart Structures and Integrated Systems; San Diengo, CA, USA. 9–13 April 2014; 90570E. DOI
Kwon S.-D. A T-shaped piezoelectric cantilever for fluid energy harvesting. Appl. Phys. Lett. 2010;97:164102. doi: 10.1063/1.3503609. DOI
Zhou Z., Qin W., Zhu P., Shang S. Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings. Energy. 2018;153:400–412. doi: 10.1016/j.energy.2018.04.035. DOI
Cheng T., Fu X., Liu W., Lu X., Chen X., Wang Y., Bao G. Airfoil-based cantilevered polyvinylidene fluoride layer generator for translating amplified air-flow energy. Renew. Energy. 2019;135:399–407. doi: 10.1016/j.renene.2018.12.046. DOI
Shan X., Tian H., Chen D., Xie T. A curved panel energy harvester for aeroelastic vibration. Appl. Energy. 2019;249:58–66. doi: 10.1016/j.apenergy.2019.04.153. DOI
Tang X., Sameer M., Mandal S. Acoustic Wireless Power and Data Telemetry for Structural Health Monitoring; Proceedings of the 2018 IEEE Sensors Conference; New Delhi, India. 28–31 October 2018; DOI
Wang Y., Zhu X., Zhang T., Bano S., Pan H., Qi L., Zhang Z., Yuan Y. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. Appl. Energy. 2018;230:52–61. doi: 10.1016/j.apenergy.2018.08.080. DOI
Rezaei M., Talebitooti R., Friswell M.I. Efficient acoustic harvesting by deploying magnetic restoring force. Smart Mater. Struct. 2019;28:105037. doi: 10.1088/1361-665X/ab3a6a. DOI
Wang X., Xu J., Ding J., Zhao C., Huang Z. A compact and low-frequency acoustic energy harvester using layered acoustic metamaterials. Smart Mater. Struct. 2019;28:025035. doi: 10.1088/1361-665X/aafbf6. DOI
Qi S., Oudich M., Li Y., Assouar B. Acoustic energy harvesting based on a planar acoustic metamaterial. Appl. Phys. Lett. 2016;108:263501. doi: 10.1063/1.4954987. DOI
Ali M., Albasha L., Qaddoumi N. RF energy harvesting for autonomous wireless sensor networks; Proceedings of the 8th International Conference Design & Technology of Integrated Systems in Nanoscale Era; Abu Dhabi, UAE. 26–28 March 2013; pp. 78–81. DOI
Luo Y., Pu L., Wang G., Zhao Y. RF Energy Harvesting Wireless Communications: RF Environment, Device Hardware and Practical Issues. Sensors. 2019;19:3010. doi: 10.3390/s19133010. PubMed DOI PMC
Yin S., Qu Z. Rate-Optimal Coding Design in Joint Transfer of Energy and Information. IEEE Commun. Lett. 2015;19:715–728. doi: 10.1109/LCOMM.2015.2410291. DOI
Penella-López M.T., Gasulla-Forner M. Powering Autonomous Sensors. Springer; Dordrecht, The Netherlands: 2011. Radiofrequency Energy Harvesting. DOI
Srinaga N.N., Vinoy K.J. Design of a compact dual-band antenna for RF power transfer in an aircraft fuel tank; Proceedings of the 2015 IEEE Applied Electromagnetics Conference; Guwahati, India. 18–21 December 2015; pp. 1–2. DOI
Estrada J., Ramos I., Narayan A., Keith A., Popovic Z. RF energy harvester in the proximity of an aircraft radar altimeter; Proceedings of the 2016 IEEE Wireless Power Transfer Conference; Aveiro, Portugal. 6 May 2016; pp. 1–4. DOI
Sergiou C., Vassiliou V., Christou K. RF Energy Harvesting in Wireless Sensor Networks for Critical Aircraft Systems—An Experimental approach; Proceedings of the 2016 IEEE Conference on Wireless for Space and Extreme Environments; Aachen, Germany. 26–59 September 2016; pp. 173–183. DOI
Liu G., Mrad N., Xiao G., Li Z., Ban B. RF-based Power Transmission for Wireless Sensors Nodes; Proceedings of the Smart Materials, Structures & NDT in Aerospace; Montreal, QC, Canada. 2–4 November 2011.
Álvarez-Carulla A., Calomer-Farrarons J., López-Sánchez J., Miribel-Catalá P. Piezoelectric Harvester-Based Structural Health Monitoring that Uses a Self-Powered Adaptive Circuit; Proceedings of the 2015 IEEE Metrology for Aerospace; Benevento, Italy. 3–5 June 2015; pp. 531–535. DOI
Newell D., Duffy M. Review of Power Conversion and Energy Management for Low-Power, Low-Voltage Energy Harvesting Powered Wireless Sensors. IEEE Trans. Power Electron. 2019;34:9794–9805. doi: 10.1109/TPEL.2019.2894465. DOI
Richelli A., Colalongo L., Kovacs-Vajna Z. A Review of DC/DC converters for Ultra Low Voltage Energy Harvesting. J. Low Power Electron. 2016;12:138–149. doi: 10.1166/jolpe.2016.1427. DOI
Kilani D., Mohammad B., Alhawari M., Saleh H., Ismail M. Power Management for Wearable Electronic Devices. Springer Nature; London, UK: 2020. DOI
Dickson J.F. On-Chip High-Voltage Generation in MNOS Integrated Circuits Using an Improved Voltage Multiplier Technique. IEEE J. Solid-State Circuits. 1976;11:374–378. doi: 10.1109/JSSC.1976.1050739. DOI
Tse C.K., Wong S.C., Chow M.H.L. On Lossless Switched-Capacitor Power Converters. IEEE Trans. Power Electron. 1995;10:286–291. doi: 10.1109/63.387993. DOI
Carreon-Bautista S., Eladawy A., Mohieldin A.N., Sánchez-Sinencio E. Boost Converter with Dynamic Input Impedance Matching for Energy Harvesting with Multi-Array Thermoelectric Generators. IEEE Trans. Ind. Electron. 2014;61:5345–5353. doi: 10.1109/TIE.2014.2300035. DOI
Alhawari M., Mohammad B., Saleh H., Ismail M. Energy Harvesting for Self-Powered Wearable Devices. Springer; Cham, Switzerland: 2018. DOI
Dell’Anna F., Dong T., Li P., Wen Y., Yang Z., Casu M.R., Azadmehr M., Berg Y. State-of-the-Art Power Management Circuits for Piezoelectric Energy Harvesters. IEEE Circ. Syst. Mag. 2018;18:27–48. doi: 10.1109/MCAS.2018.2849262. DOI
Prasad R.V., Devasenapathy S., Rao V.S., Vazifehdan J. Reincarnation in the ambiance: Devices and Networks with Energy Harvesting. IEEE Commun. Surv. Tutor. 2014;16:195–213. doi: 10.1109/SURV.2013.062613.00235. DOI