Kinetic Electromagnetic Energy Harvester for Railway Applications-Development and Test with Wireless Sensor

. 2022 Jan 25 ; 22 (3) : . [epub] 20220125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35161651

This paper deals with a development and lab testing of energy harvesting technology for autonomous sensing in railway applications. Moving trains are subjected to high levels of vibrations and rail deformations that could be converted via energy harvesting into useful electricity. Modern maintenance solutions of a rail trackside typically consist of a large number of integrated sensing systems, which greatly benefit from autonomous source of energy. Although the amount of energy provided by conventional energy harvesting devices is usually only around several milliwatts, it is sufficient as a source of electrical power for low power sensing devices. The main aim of this paper is to design and test a kinetic electromagnetic energy harvesting system that could use energy from a passing train to deliver sufficient electrical power for sensing nodes. Measured mechanical vibrations of regional and express trains were used in laboratory testing of the developed energy harvesting device with an integrated resistive load and wireless transmission system, and based on these tests the proposed technology shows a high potential for railway applications.

Zobrazit více v PubMed

Roundy S., Wright P.K., Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2003;26:1131–1144. doi: 10.1016/S0140-3664(02)00248-7. DOI

Hodge V.J., O’Keefe S., Weeks M., Moulds A. Wireless Sensor Networks for Condition Monitoring in the Railway Industry: A Survey. IEEE Trans. Intell. Transp. Syst. 2015;16:1088–1106. doi: 10.1109/TITS.2014.2366512. DOI

Aktakka E.E., Najafi K. A Micro Inertial Energy Harvesting Platform With Self-Supplied Power Management Circuit for Autonomous Wireless Sensor Nodes. IEEE J. Solid-State Circuits. 2014;49:2017–2029. doi: 10.1109/JSSC.2014.2331953. DOI

Zelenika S., Hadas Z., Bader S., Becker T., Gljušćić P., Hlinka J., Janak L., Kamenar E., Ksica F., Kyratsi T., et al. Energy Harvesting Technologies for Structural Health Monitoring of Airplane Components—A Review. Sensors. 2020;20:6685. doi: 10.3390/s20226685. PubMed DOI PMC

Yoon Y.-J., Park W.-T., Li K.H.H., Ng Y.Q., Song Y. A study of piezoelectric harvesters for low-level vibrations in wireless sensor networks. Int. J. Precis. Eng. Manuf. 2013;14:1257–1262. doi: 10.1007/s12541-013-0171-2. DOI

Shen C., Li Z., Dollovoet R. Advances in Dynamics of Vehicles on Roads and Tracks. IAVSD 2019. Lecture Notes in Mechanical Engineering. Springer; Cham, Switzerland: 2020. A Novel Method for Railway Crossing Monitoring Based on Ambient Vibration Caused by Train-Track Interaction; pp. 133–141. DOI

Oßberger U., Kollment W., Eck S. Insights towards Condition Monitoring of Fixed Railway Crossings. Procedia Struct. Integr. 2017;4:106–114. doi: 10.1016/j.prostr.2017.07.007. DOI

Liu X., Markine V.L. Correlation analysis and verification of railway crossing condition monitoring. Sensors. 2019;19:4175. doi: 10.3390/s19194175. PubMed DOI PMC

MBS Vehicle–Crossing Model for Crossing Structural Health Monitoring. Sensors. 2020;20:2880. doi: 10.3390/s20102880. PubMed DOI PMC

Liu X., Markine V., Wang H., Shevtsov I. Experimental tools for railway crossing condition monitoring (crossing condition monitoring tools) Measurement. 2018;129:424–435. doi: 10.1016/j.measurement.2018.07.062. DOI

Cahill P., Hanley C., Jaksic V., Mathewson A., Pakrashi V. Energy Harvesting for Monitoring Bridges over their Operational Life; Proceedings of the 8th European Workshop on Structural Health Monitoring, EWSHM 2016; Bilbao, Spain. 5–8 July 2016; pp. 1–11.

Hou W., Li Y., Guo W., Li J., Chen Y., Duan X. Railway vehicle induced vibration energy harvesting and saving of rail transit segmental prefabricated and assembling bridges. J. Clean. Prod. 2018;182:946–959. doi: 10.1016/j.jclepro.2018.02.019. DOI

Gao M., Wang P., Wang Y., Yao L. Self-Powered ZigBee Wireless Sensor Nodes for Railway Condition Monitoring. IEEE Trans. Intell. Transp. Syst. 2017;19:900–909. doi: 10.1109/TITS.2017.2709346. DOI

Gao M., Lu J., Wang Y., Wang P., Wang L. Smart monitoring of underground railway by local energy generation. Undergr. Space. 2017;2:210–219. doi: 10.1016/j.undsp.2017.10.002. DOI

Zhang X., Zhang Z., Pan H., Salman W., Yuan Y., Liu Y. A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads. Energy Convers. Manag. 2016;118:287–294. doi: 10.1016/j.enconman.2016.04.012. DOI

Zhang X., Pan H., Qi L., Zhang Z., Yuan Y., Liu Y. A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads. Appl. Energy. 2017;204:1535–1543. doi: 10.1016/j.apenergy.2017.04.064. DOI

Wang J.J., Penamalli G.P., Zuo L. Electromagnetic energy harvesting from train induced railway track vibrations; Proceedings of the 2012 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA; Suzhou, China. 8–10 July 2012; pp. 29–34.

Lin T., Pan Y., Chen S., Zuo L. Modeling and field testing of an electromagnetic energy harvester for rail tracks with anchorless mounting. Appl. Energy. 2018;213:219–226. doi: 10.1016/j.apenergy.2018.01.032. DOI

Pan Y., Lin T., Qian F., Liu M., Yu J., Zuo J., Zuo L. Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation. Appl. Energy. 2019;247:309–321. doi: 10.1016/j.apenergy.2019.03.051. DOI

Pourghodrat A., Nelson C.A., Hansen S.E., Kamarajugadda V., Platt S.R. Power harvesting systems design for railroad safety. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2014;228:504–521. doi: 10.1177/0954409713482659. DOI

Tianchen Y., Jian Y., RuiGang S., Xiaowei L. Vibration energy harvesting system for railroad safety based on running vehicles. Smart Mater. Struct. 2014;23:125046. doi: 10.1088/0964-1726/23/12/125046. DOI

Wang J., Shi Z., Xiang H., Song G. Modeling on energy harvesting from a railway system using piezoelectric transducers. Smart Mater. Struct. 2015;24:105017. doi: 10.1088/0964-1726/24/10/105017. DOI

Cleante V.G., Brennan M.J., Gatti G., Thompson D.J. Energy harvesting from the vibrations of a passing train: Effect of speed variability. J. Phys. Conf. Ser. 2016;744:12080. doi: 10.1088/1742-6596/744/1/012080. DOI

Gao M.Y., Wang P., Cao Y., Chen R., Liu C. A rail-borne piezoelectric transducer for energy harvesting of railway vibration. J. Vibroeng. 2016;18:4647–4663. doi: 10.21595/jve.2016.16938. DOI

Gao M., Wang P., Cao Y., Chen R., Cai D. Design and Verification of a Rail-Borne Energy Harvester for Powering Wireless Sensor Networks in the Railway Industry. IEEE Trans. Intell. Transp. Syst. 2016;18:1–14. doi: 10.1109/TITS.2016.2611647. DOI

Cahill P., Hazra B., Karoumi R., Mathewson A., Pakrashi V. Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage. Mech. Syst. Signal Process. 2018;106:228–265. doi: 10.1016/j.ymssp.2018.01.007. DOI

Fitzgerald P.C., Malekjafarian A., Bhowmik B., Prendergast L.J., Cahill P., Kim C.-W., Hazra B., Pakrashi V., Obrien E.J. Scour Damage Detection and Structural Health Monitoring of a Laboratory-Scaled Bridge Using a Vibration Energy Harvesting Device. Sensors. 2019;19:2572. doi: 10.3390/s19112572. PubMed DOI PMC

Rubes O., Chalupa J., Ksica F., Hadas Z. Development and experimental validation of self-powered wireless vibration sensor node using vibration energy harvester. Mech. Syst. Signal Process. 2021;160:107890. doi: 10.1016/j.ymssp.2021.107890. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Sensors Special Issue: "Vibration Energy Harvesting for Wireless Sensors"

. 2022 Jun 17 ; 22 (12) : . [epub] 20220617

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...