Kinetic Electromagnetic Energy Harvester for Railway Applications-Development and Test with Wireless Sensor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35161651
PubMed Central
PMC8839185
DOI
10.3390/s22030905
PII: s22030905
Knihovny.cz E-zdroje
- Klíčová slova
- electromagnetic transducer, energy harvesting, model, test, train, vibration, wireless sensor,
- Publikační typ
- časopisecké články MeSH
This paper deals with a development and lab testing of energy harvesting technology for autonomous sensing in railway applications. Moving trains are subjected to high levels of vibrations and rail deformations that could be converted via energy harvesting into useful electricity. Modern maintenance solutions of a rail trackside typically consist of a large number of integrated sensing systems, which greatly benefit from autonomous source of energy. Although the amount of energy provided by conventional energy harvesting devices is usually only around several milliwatts, it is sufficient as a source of electrical power for low power sensing devices. The main aim of this paper is to design and test a kinetic electromagnetic energy harvesting system that could use energy from a passing train to deliver sufficient electrical power for sensing nodes. Measured mechanical vibrations of regional and express trains were used in laboratory testing of the developed energy harvesting device with an integrated resistive load and wireless transmission system, and based on these tests the proposed technology shows a high potential for railway applications.
Zobrazit více v PubMed
Roundy S., Wright P.K., Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2003;26:1131–1144. doi: 10.1016/S0140-3664(02)00248-7. DOI
Hodge V.J., O’Keefe S., Weeks M., Moulds A. Wireless Sensor Networks for Condition Monitoring in the Railway Industry: A Survey. IEEE Trans. Intell. Transp. Syst. 2015;16:1088–1106. doi: 10.1109/TITS.2014.2366512. DOI
Aktakka E.E., Najafi K. A Micro Inertial Energy Harvesting Platform With Self-Supplied Power Management Circuit for Autonomous Wireless Sensor Nodes. IEEE J. Solid-State Circuits. 2014;49:2017–2029. doi: 10.1109/JSSC.2014.2331953. DOI
Zelenika S., Hadas Z., Bader S., Becker T., Gljušćić P., Hlinka J., Janak L., Kamenar E., Ksica F., Kyratsi T., et al. Energy Harvesting Technologies for Structural Health Monitoring of Airplane Components—A Review. Sensors. 2020;20:6685. doi: 10.3390/s20226685. PubMed DOI PMC
Yoon Y.-J., Park W.-T., Li K.H.H., Ng Y.Q., Song Y. A study of piezoelectric harvesters for low-level vibrations in wireless sensor networks. Int. J. Precis. Eng. Manuf. 2013;14:1257–1262. doi: 10.1007/s12541-013-0171-2. DOI
Shen C., Li Z., Dollovoet R. Advances in Dynamics of Vehicles on Roads and Tracks. IAVSD 2019. Lecture Notes in Mechanical Engineering. Springer; Cham, Switzerland: 2020. A Novel Method for Railway Crossing Monitoring Based on Ambient Vibration Caused by Train-Track Interaction; pp. 133–141. DOI
Oßberger U., Kollment W., Eck S. Insights towards Condition Monitoring of Fixed Railway Crossings. Procedia Struct. Integr. 2017;4:106–114. doi: 10.1016/j.prostr.2017.07.007. DOI
Liu X., Markine V.L. Correlation analysis and verification of railway crossing condition monitoring. Sensors. 2019;19:4175. doi: 10.3390/s19194175. PubMed DOI PMC
MBS Vehicle–Crossing Model for Crossing Structural Health Monitoring. Sensors. 2020;20:2880. doi: 10.3390/s20102880. PubMed DOI PMC
Liu X., Markine V., Wang H., Shevtsov I. Experimental tools for railway crossing condition monitoring (crossing condition monitoring tools) Measurement. 2018;129:424–435. doi: 10.1016/j.measurement.2018.07.062. DOI
Cahill P., Hanley C., Jaksic V., Mathewson A., Pakrashi V. Energy Harvesting for Monitoring Bridges over their Operational Life; Proceedings of the 8th European Workshop on Structural Health Monitoring, EWSHM 2016; Bilbao, Spain. 5–8 July 2016; pp. 1–11.
Hou W., Li Y., Guo W., Li J., Chen Y., Duan X. Railway vehicle induced vibration energy harvesting and saving of rail transit segmental prefabricated and assembling bridges. J. Clean. Prod. 2018;182:946–959. doi: 10.1016/j.jclepro.2018.02.019. DOI
Gao M., Wang P., Wang Y., Yao L. Self-Powered ZigBee Wireless Sensor Nodes for Railway Condition Monitoring. IEEE Trans. Intell. Transp. Syst. 2017;19:900–909. doi: 10.1109/TITS.2017.2709346. DOI
Gao M., Lu J., Wang Y., Wang P., Wang L. Smart monitoring of underground railway by local energy generation. Undergr. Space. 2017;2:210–219. doi: 10.1016/j.undsp.2017.10.002. DOI
Zhang X., Zhang Z., Pan H., Salman W., Yuan Y., Liu Y. A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads. Energy Convers. Manag. 2016;118:287–294. doi: 10.1016/j.enconman.2016.04.012. DOI
Zhang X., Pan H., Qi L., Zhang Z., Yuan Y., Liu Y. A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads. Appl. Energy. 2017;204:1535–1543. doi: 10.1016/j.apenergy.2017.04.064. DOI
Wang J.J., Penamalli G.P., Zuo L. Electromagnetic energy harvesting from train induced railway track vibrations; Proceedings of the 2012 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA; Suzhou, China. 8–10 July 2012; pp. 29–34.
Lin T., Pan Y., Chen S., Zuo L. Modeling and field testing of an electromagnetic energy harvester for rail tracks with anchorless mounting. Appl. Energy. 2018;213:219–226. doi: 10.1016/j.apenergy.2018.01.032. DOI
Pan Y., Lin T., Qian F., Liu M., Yu J., Zuo J., Zuo L. Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation. Appl. Energy. 2019;247:309–321. doi: 10.1016/j.apenergy.2019.03.051. DOI
Pourghodrat A., Nelson C.A., Hansen S.E., Kamarajugadda V., Platt S.R. Power harvesting systems design for railroad safety. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2014;228:504–521. doi: 10.1177/0954409713482659. DOI
Tianchen Y., Jian Y., RuiGang S., Xiaowei L. Vibration energy harvesting system for railroad safety based on running vehicles. Smart Mater. Struct. 2014;23:125046. doi: 10.1088/0964-1726/23/12/125046. DOI
Wang J., Shi Z., Xiang H., Song G. Modeling on energy harvesting from a railway system using piezoelectric transducers. Smart Mater. Struct. 2015;24:105017. doi: 10.1088/0964-1726/24/10/105017. DOI
Cleante V.G., Brennan M.J., Gatti G., Thompson D.J. Energy harvesting from the vibrations of a passing train: Effect of speed variability. J. Phys. Conf. Ser. 2016;744:12080. doi: 10.1088/1742-6596/744/1/012080. DOI
Gao M.Y., Wang P., Cao Y., Chen R., Liu C. A rail-borne piezoelectric transducer for energy harvesting of railway vibration. J. Vibroeng. 2016;18:4647–4663. doi: 10.21595/jve.2016.16938. DOI
Gao M., Wang P., Cao Y., Chen R., Cai D. Design and Verification of a Rail-Borne Energy Harvester for Powering Wireless Sensor Networks in the Railway Industry. IEEE Trans. Intell. Transp. Syst. 2016;18:1–14. doi: 10.1109/TITS.2016.2611647. DOI
Cahill P., Hazra B., Karoumi R., Mathewson A., Pakrashi V. Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage. Mech. Syst. Signal Process. 2018;106:228–265. doi: 10.1016/j.ymssp.2018.01.007. DOI
Fitzgerald P.C., Malekjafarian A., Bhowmik B., Prendergast L.J., Cahill P., Kim C.-W., Hazra B., Pakrashi V., Obrien E.J. Scour Damage Detection and Structural Health Monitoring of a Laboratory-Scaled Bridge Using a Vibration Energy Harvesting Device. Sensors. 2019;19:2572. doi: 10.3390/s19112572. PubMed DOI PMC
Rubes O., Chalupa J., Ksica F., Hadas Z. Development and experimental validation of self-powered wireless vibration sensor node using vibration energy harvester. Mech. Syst. Signal Process. 2021;160:107890. doi: 10.1016/j.ymssp.2021.107890. DOI
Sensors Special Issue: "Vibration Energy Harvesting for Wireless Sensors"