Vibration Sensing Systems Based on Poly(Vinylidene Fluoride) and Microwave-Assisted Synthesized ZnO Star-Like Particles with Controllable Structural and Physical Properties

. 2020 Nov 26 ; 10 (12) : . [epub] 20201126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33255990

Grantová podpora
NPRP-6-282-2-119 Qatar National Research Fund
19-17457S Grantová Agentura České Republiky
RP/CPS/2020/003 Ministry of Education Youth and Sports of the Czech Republic

This study deals with the effect of zinc oxide (ZnO) star-like filler addition to the poly(vinylidene fluoride) (PVDF) matrix, and its effect on the structural and physical properties and consequences to the vibration sensing performance. Microwave-assisted synthesis in open vessel setup was optimized for the preparation of the star-like shape of ZnO crystalline particles. The crystalline and star-like structure was confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDX). Furthermore, the PVDF-based composites were prepared using a spin-coating technique from solution. An investigation of the transformation of the α crystalline phase to the β crystalline phase of the neat PVDF matrix and with various filler concentrations was performed using Fourier-Transform infrared (FTIR) spectroscopy, which shows an enhanced β-phase from 44.1% to 66.4% for neat PVDF and PVDF with 10 wt.% of particles, respectively. Differential scanning calorimetry (DSC) measurements and investigation showed enhanced crystallinity and melting enthalpy of the composite systems in comparison to neat PVDF, since ZnO star-like particles act as nucleating agents. The impact of the filler content on the physical properties, such as thermal and dynamic mechanical properties, which are critical for the intended applications, were investigated as well, and showed that fabricated composites exhibit enhanced thermal stability. Because of its dynamic mechanical properties, the composites can still be utilized as flexible sensors. Finally, the vibration sensing capability was systematically investigated, and it was shown that the addition of ZnO star-like filler enhanced the value of the thickness mode d33 piezoelectric constant from 16.3 pC/N to 29.2 pC/N for neat PVDF and PVDF with 10 wt.% of ZnO star-like particles.

Zobrazit více v PubMed

Feng C.-X., Huang T., Chen H.-M., Yang J.-H., Zhang N., Wang Y., Zhang C.-L., Zhou Z.-W. Carbon nanotubes induced poly(vinylidene fluoride) crystallization from a miscible poly(vinylidene fluoride)/poly(methyl methacrylate) blend. Colloid Polym. Sci. 2014;292:3279–3290. doi: 10.1007/s00396-014-3375-9. DOI

Huang L., Lu C., Wang F., Wang L. Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. RSC Adv. 2014;4:45220–45229. doi: 10.1039/C4RA07379G. DOI

Chang C., Tran V.H., Wang J., Fuh Y.-K., Lin L. Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nano Lett. 2010;10:726–731. doi: 10.1021/nl9040719. PubMed DOI

Zhang Z., Xu X.-L., Yang J., Huang T., Zhang N., Wang Y., Zhou Z. High thermal conductivity of poly(vinylidene fluoride)/carbon nanotubes nanocomposites achieved by adding polyvinylpyrrolidone. Compos. Sci. Technol. 2015;106:1–8. doi: 10.1016/j.compscitech.2014.10.019. DOI

Lee C., Tarbutton J.A. Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications. Smart Mater. Struct. 2014;23:7. doi: 10.1088/0964-1726/23/9/095044. DOI

Saravanakumar B., SoYoon S., Kim S.-J. Self-Powered pH Sensor Based on a Flexible Organic–Inorganic Hybrid Composite Nanogenerator. ACS Appl. Mater. Interfaces. 2014;6:13716–13723. doi: 10.1021/am5031648. PubMed DOI

Shao H., Fang J., Wang H., Lin T. Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Adv. 2015;5:14345–14350. doi: 10.1039/C4RA16360E. DOI

Zelenika S., Hadas Z., Bader S., Becker T., Gljušćić P., Hlinka J., Janak L., Kamenar E., Ksica F., Kyratsi T., et al. Energy Harvesting Technologies for Structural Health Monitoring of Airplane Components—A Review. Sensors. 2020;20:6685. doi: 10.3390/s20226685. PubMed DOI PMC

Kanik M., Aktas O., Sen H.S., Durgun E., Bayindir M. Spontaneous High Piezoelectricity in Poly(vinylidene fluoride) Nanoribbons Produced by Iterative Thermal Size Reduction Technique. ACS Nano. 2014;8:9311–9323. doi: 10.1021/nn503269b. PubMed DOI

Dalui A., Sarkar P.K., Aggarwal L., Ghosh S.K., Mandal D., Sheet G., Acharya S. Self-oriented β-crystalline phase in the polyvinylidene fluoride ferroelectric and piezo-sensitive ultrathin Langmuir–Schaefer film. Phys. Chem. Chem. Phys. 2015;17:8159–8165. doi: 10.1039/c5cp00218d. PubMed DOI

Martins P., Lopes A.C., Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014;39:683–706. doi: 10.1016/j.progpolymsci.2013.07.006. DOI

Li L., Zhang M., Rong M., Ruan W. Studies on the transformation process of PVDF from α to β phase by stretching. RSC Adv. 2014;4:3938–3943. doi: 10.1039/C3RA45134H. DOI

Liu G., Schneider K., Zheng L., Zhang X., Li C., Stamm M., Wang D. Stretching induced phase separation in poly(vinylidene fluoride)/poly(butylene succinate) blends studied by in-situ X-ray scattering. Polymer. 2014;55:2588–2596. doi: 10.1016/j.polymer.2014.03.055. DOI

Sharma M., Madras G., Bose S. Process induced electroactive β-polymorph in PVDF: Effect on dielectric and ferroelectric properties. Phys. Chem. Chem. Phys. 2014;16:14792–14799. doi: 10.1039/c4cp01004c. PubMed DOI

Kim G.H., Hong S.M., Seo Y. Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys. Chem. Chem. Phys. 2009;11:10506–10512. doi: 10.1039/b912801h. PubMed DOI

Lei T., Cai X., Wang X., Yu L., Hu X., Zheng G., Lv W., Wang L., Wu D., Sun D., et al. Spectroscopic evidence for a high fraction of ferroelectric phase induced in electrospun polyvinylidene fluoride fibers. RSC Adv. 2013;3:24952–24958. doi: 10.1039/c3ra42622j. DOI

Fang J., Niu H., Wang H., Wang X., Lin T. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 2013;6:2196–2202. doi: 10.1039/c3ee24230g. DOI

Fang J., Wang X., Lin T. Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J. Mater. Chem. 2011;21:11088–11091. doi: 10.1039/c1jm11445j. DOI

Lund A., Gustafsson C., Bertilsson H., Rychwalski R.W. Enhancement of β phase crystals formation with the use of nanofillers in PVDF films and fibres. Compos. Sci. Technol. 2011;71:222–229. doi: 10.1016/j.compscitech.2010.11.014. DOI

Mofokeng T.G., Luyt A.S., Pavlović V.P., Pavlović V.B., Dudić D., Vlahović B., Djoković V. Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. J. Appl. Phys. 2014;115:084109. doi: 10.1063/1.4866694. DOI

Zhang Y.Y., Jiang S.L., Yu Y., Zeng Y., Zhang G.Z., Zhang Q.F., He J.G. Crystallization behavior and phase-transformation mechanism with the use of graphite nanosheets in poly(vinylidene fluoride) nanocomposites. J. Appl. Polym. Sci. 2012;125:E314–E319. doi: 10.1002/app.35627. DOI

Thangavel E., Ramasundaram S., Pitchaimuthu S., Hong S.W., Lee S.Y., Yoo S.-S., Kim D.-E., Ito E., Kang Y.S. Structural and tribological characteristics of poly(vinylidene fluoride)/functionalized graphene oxide nanocomposite thin films. Compos. Sci. Technol. 2014;90:187–192. doi: 10.1016/j.compscitech.2013.11.007. DOI

Jia N., Xing Q., Xia G., Sun J., Song R., Huang W. Enhanced β-crystalline phase in poly(vinylidene fluoride) films by polydopamine-coated BaTiO3 nanoparticles. Mater. Lett. 2015;139:212–215. doi: 10.1016/j.matlet.2014.10.069. DOI

Guan X., Zhang Y., Li H., Ou J. PZT/PVDF composites doped with carbon nanotubes. Sens. Actuators A Phys. 2013;194:228–231. doi: 10.1016/j.sna.2013.02.005. DOI

Jaleh B., Fakhri P., Noroozi M., Muensit N. Influence of Copper Nanoparticles Concentration on the Properties of Poly(vinylidene fluoride)/Cu Nanoparticles Nanocomposite Films. J. Inorg. Organomet. Polym. Mater. 2012;22:878–885. doi: 10.1007/s10904-012-9660-5. DOI

Vasundhara K., Mandal B.P., Tyagi A. Enhancement of dielectric permittivity and ferroelectricity of a modified cobalt nanoparticle and polyvinylidene fluoride based composite. RSC Adv. 2015;5:8591–8597. doi: 10.1039/C4RA09292A. DOI

Miranda D., Sencadas V., Sánchez-Iglesias A., Pastorizasantos I., Liz-Marzán L.M., Ribelles J.L.G., Lanceros-Mendez S. Influence of Silver Nanoparticles Concentration on the α- to β-Phase Transformation and the Physical Properties of Silver Nanoparticles Doped Poly(vinylidene fluoride) Nanocomposites. J. Nanosci. Nanotechnol. 2009;9:2910–2916. doi: 10.1166/jnn.2009.208. PubMed DOI

Indolia A.P., Gaur M.S. Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. J. Therm. Anal. Calorim. 2012;113:821–830. doi: 10.1007/s10973-012-2834-0. DOI

Ourry L., Marchesini S., Bibani M., Mercone S., Ammar S., Mammeri F. Influence of nanoparticle size and concentration on the electroactive phase content of PVDF in PVDF-CoFe2O4-based hybrid films. Phys. Status Solidi (a) 2014;212:252–258. doi: 10.1002/pssa.201431563. DOI

An N., Liu H., Ding Y., Zhang M., Tang Y. Preparation and electroactive properties of a PVDF/nano-TiO2 composite film. Appl. Surf. Sci. 2011;257:3831–3835. doi: 10.1016/j.apsusc.2010.12.076. DOI

Jaleh B., Jabbari A. Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl. Surf. Sci. 2014;320:339–347. doi: 10.1016/j.apsusc.2014.09.030. DOI

Loh K.J., Chang D. Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing. J. Mater. Sci. 2011;46:228–237. doi: 10.1007/s10853-010-4940-3. DOI

Li Z., Zhang X., Li G. In situ ZnO nanowire growth to promote the PVDF piezo phase and the ZnO–PVDF hybrid self-rectified nanogenerator as a touch sensor. Phys. Chem. Chem. Phys. 2014;16:5475–5479. doi: 10.1039/c3cp54083a. PubMed DOI

Fang L., Wu W., Huang X., He J., Jiang P. Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Compos. Sci. Technol. 2015;107:67–74. doi: 10.1016/j.compscitech.2014.12.009. DOI

Zheng Y., Zheng L., Zhan Y., Lin X., Zheng A.Q., Wei K. Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis. Inorg. Chem. 2007;46:6980–6986. doi: 10.1021/ic700688f. PubMed DOI

Zhao L., Chen X., Wang X., Zhang Y., Wei W., Sun Y., Antonietti M., Titirici M.-M. One-Step Solvothermal Synthesis of a Carbon@TiO2 Dyade Structure Effectively Promoting Visible-Light Photocatalysis. Adv. Mater. 2010;22:3317–3321. doi: 10.1002/adma.201000660. PubMed DOI

Guo C., Ge M., Liu L., Gao G., Feng Y., Wang Y. Directed Synthesis of Mesoporous TiO2 Microspheres: Catalysts and Their Photocatalysis for Bisphenol A Degradation. Environ. Sci. Technol. 2010;44:419–425. doi: 10.1021/es9019854. PubMed DOI

Bazant P., Kuritka I., Munster L., Machovsky M., Kozakova Z., Saha P. Hybrid nanostructured Ag/ZnO decorated powder cellulose fillers for medical plastics with enhanced surface antibacterial activity. J. Mater. Sci. Mater. Med. 2014;25:2501–2512. doi: 10.1007/s10856-014-5274-5. PubMed DOI

Sedlačík M., Mrlik M., Kozáková Z., Pavlínek V., Kuritka I. Synthesis and electrorheology of rod-like titanium oxide particles prepared via microwave-assisted molten-salt method. Colloid Polym. Sci. 2012;291:1105–1111. doi: 10.1007/s00396-012-2834-4. DOI

Machovsky M., Kuritka I., Kozakova Z. Microwave assisted synthesis of nanostructured Fe3O4/ZnO microparticles. Mater. Lett. 2012;86:136–138. doi: 10.1016/j.matlet.2012.07.038. DOI

Plachý T., Mrlik M., Kozáková Z., Suly P., Sedlačík M., Pavlínek V., Kuritka I. The Electrorheological Behavior of Suspensions Based on Molten-Salt Synthesized Lithium Titanate Nanoparticles and Their Core–Shell Titanate/Urea Analogues. ACS Appl. Mater. Interfaces. 2015;7:3725–3731. doi: 10.1021/am508471f. PubMed DOI

Pan X., Wang Z., Cao Z., Zhang S., He Y., Zhang Y., Chen K., Hu Y., Gu H. A self-powered vibration sensor based on electrospun poly(vinylidene fluoride) nanofibres with enhanced piezoelectric response. Smart Mater. Struct. 2016;25:105010. doi: 10.1088/0964-1726/25/10/105010. DOI

Liu Z., Pan C., Su C.-Y., Lin L., Chen Y., Tsai J. A flexible sensing device based on a PVDF/MWCNT composite nanofiber array with an interdigital electrode. Sens. Actuators A Phys. 2014;211:78–88. doi: 10.1016/j.sna.2014.03.012. DOI

Ram F., Gudadhe A., Vijayakanth T., Aherrao S., Borkar V., Boomishankar R., Shanmuganathan K. Nanocellulose Reinforced Flexible Composite Nanogenerators with Enhanced Vibrational Energy Harvesting and Sensing Properties. ACS Appl. Polym. Mater. 2020;2:2550–2562. doi: 10.1021/acsapm.0c00158. DOI

Zhao S., Erturk A. Deterministic and band-limited stochastic energy harvesting from uniaxial excitation of a multilayer piezoelectric stack. Sens. Actuators A Phys. 2014;214:58–65. doi: 10.1016/j.sna.2014.04.019. DOI

Shehata N., Kandas I., Hassounah I., Sobolciak P., Krupa I., Mrlik M., Popelka A., Steadman J., Lewis R.V. Piezoresponse, Mechanical, and Electrical Characteristics of Synthetic Spider Silk Nanofibers. Nanomaterials. 2018;8:585. doi: 10.3390/nano8080585. PubMed DOI PMC

Byzynski G., Melo C., Volanti D.P., Ferrer M.M., Gouveia A.F., Ribeiro C., Andrés J., Longo E. The interplay between morphology and photocatalytic activity in ZnO and N-doped ZnO crystals. Mater. Des. 2017;120:363–375. doi: 10.1016/j.matdes.2017.02.020. DOI

Machovsky M., Mrlik M., Kuritka I., Pavlinek V., Babayan V. Novel synthesis of core–shell urchin-like ZnO coated carbonyl iron microparticles and their magnetorheological activity. RSC Adv. 2014;4:996–1003. doi: 10.1039/C3RA44982C. DOI

Issa A.A., Al-Maadeed M., Luyt A.S., Mrlik M., Hassan M.K. Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano)fibers. J. Appl. Polym. Sci. 2016;133:12. doi: 10.1002/app.43594. DOI

Částková K., Kastyl J., Sobola D., Petruš J., Stastna E., Riha D., Tofel P. Structure–Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC

Florczak S., Lorson T., Zheng T., Mrlik M., Hutmacher D.W., Higgins M.J., Luxenhofer R., Dalton P.D. Melt electrowriting of electroactive poly(vinylidene difluoride) fibers. Polym. Int. 2019;68:735–745. doi: 10.1002/pi.5759. DOI

Salimi A., Yousefi A. Analysis Method. Polym. Test. 2003;22:699–704. doi: 10.1016/S0142-9418(03)00003-5. DOI

Liu J., Lu X., Wu C., Zhao C. Effect of preparation conditions on the morphology, polymorphism and mechanical properties of polyvinylidene fluoride membranes formed via thermally induced phase separation. J. Polym. Res. 2013;20:10. doi: 10.1007/s10965-013-0321-3. DOI

Mrlik M., Leadenham S., Almaadeed M.A., Erturk A. Figure of merit comparison of PP-based electret and PVDF-based piezoelectric polymer energy harvesters; Proceedings of the SPIE 9799: Active and Passive Smart Structures and Integrated Systems; Las Vegas, NE, USA. 21–24 March 2016; p. 979923. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace