Vibration Sensing Systems Based on Poly(Vinylidene Fluoride) and Microwave-Assisted Synthesized ZnO Star-Like Particles with Controllable Structural and Physical Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NPRP-6-282-2-119
Qatar National Research Fund
19-17457S
Grantová Agentura České Republiky
RP/CPS/2020/003
Ministry of Education Youth and Sports of the Czech Republic
PubMed
33255990
PubMed Central
PMC7761233
DOI
10.3390/nano10122345
PII: nano10122345
Knihovny.cz E-zdroje
- Klíčová slova
- ZnO star-like particles, physical properties, poly(vinylidene fluoride), structure characterization, vibration sensing,
- Publikační typ
- časopisecké články MeSH
This study deals with the effect of zinc oxide (ZnO) star-like filler addition to the poly(vinylidene fluoride) (PVDF) matrix, and its effect on the structural and physical properties and consequences to the vibration sensing performance. Microwave-assisted synthesis in open vessel setup was optimized for the preparation of the star-like shape of ZnO crystalline particles. The crystalline and star-like structure was confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDX). Furthermore, the PVDF-based composites were prepared using a spin-coating technique from solution. An investigation of the transformation of the α crystalline phase to the β crystalline phase of the neat PVDF matrix and with various filler concentrations was performed using Fourier-Transform infrared (FTIR) spectroscopy, which shows an enhanced β-phase from 44.1% to 66.4% for neat PVDF and PVDF with 10 wt.% of particles, respectively. Differential scanning calorimetry (DSC) measurements and investigation showed enhanced crystallinity and melting enthalpy of the composite systems in comparison to neat PVDF, since ZnO star-like particles act as nucleating agents. The impact of the filler content on the physical properties, such as thermal and dynamic mechanical properties, which are critical for the intended applications, were investigated as well, and showed that fabricated composites exhibit enhanced thermal stability. Because of its dynamic mechanical properties, the composites can still be utilized as flexible sensors. Finally, the vibration sensing capability was systematically investigated, and it was shown that the addition of ZnO star-like filler enhanced the value of the thickness mode d33 piezoelectric constant from 16.3 pC/N to 29.2 pC/N for neat PVDF and PVDF with 10 wt.% of ZnO star-like particles.
Center for Advanced Materials Qatar University Doha 2713 Qatar
Centre of Polymer Systems Tomas Bata University in Zlin Trida T Bati 5678 760 01 Zlin Czech Republic
G W Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
Zobrazit více v PubMed
Feng C.-X., Huang T., Chen H.-M., Yang J.-H., Zhang N., Wang Y., Zhang C.-L., Zhou Z.-W. Carbon nanotubes induced poly(vinylidene fluoride) crystallization from a miscible poly(vinylidene fluoride)/poly(methyl methacrylate) blend. Colloid Polym. Sci. 2014;292:3279–3290. doi: 10.1007/s00396-014-3375-9. DOI
Huang L., Lu C., Wang F., Wang L. Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. RSC Adv. 2014;4:45220–45229. doi: 10.1039/C4RA07379G. DOI
Chang C., Tran V.H., Wang J., Fuh Y.-K., Lin L. Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nano Lett. 2010;10:726–731. doi: 10.1021/nl9040719. PubMed DOI
Zhang Z., Xu X.-L., Yang J., Huang T., Zhang N., Wang Y., Zhou Z. High thermal conductivity of poly(vinylidene fluoride)/carbon nanotubes nanocomposites achieved by adding polyvinylpyrrolidone. Compos. Sci. Technol. 2015;106:1–8. doi: 10.1016/j.compscitech.2014.10.019. DOI
Lee C., Tarbutton J.A. Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications. Smart Mater. Struct. 2014;23:7. doi: 10.1088/0964-1726/23/9/095044. DOI
Saravanakumar B., SoYoon S., Kim S.-J. Self-Powered pH Sensor Based on a Flexible Organic–Inorganic Hybrid Composite Nanogenerator. ACS Appl. Mater. Interfaces. 2014;6:13716–13723. doi: 10.1021/am5031648. PubMed DOI
Shao H., Fang J., Wang H., Lin T. Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Adv. 2015;5:14345–14350. doi: 10.1039/C4RA16360E. DOI
Zelenika S., Hadas Z., Bader S., Becker T., Gljušćić P., Hlinka J., Janak L., Kamenar E., Ksica F., Kyratsi T., et al. Energy Harvesting Technologies for Structural Health Monitoring of Airplane Components—A Review. Sensors. 2020;20:6685. doi: 10.3390/s20226685. PubMed DOI PMC
Kanik M., Aktas O., Sen H.S., Durgun E., Bayindir M. Spontaneous High Piezoelectricity in Poly(vinylidene fluoride) Nanoribbons Produced by Iterative Thermal Size Reduction Technique. ACS Nano. 2014;8:9311–9323. doi: 10.1021/nn503269b. PubMed DOI
Dalui A., Sarkar P.K., Aggarwal L., Ghosh S.K., Mandal D., Sheet G., Acharya S. Self-oriented β-crystalline phase in the polyvinylidene fluoride ferroelectric and piezo-sensitive ultrathin Langmuir–Schaefer film. Phys. Chem. Chem. Phys. 2015;17:8159–8165. doi: 10.1039/c5cp00218d. PubMed DOI
Martins P., Lopes A.C., Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014;39:683–706. doi: 10.1016/j.progpolymsci.2013.07.006. DOI
Li L., Zhang M., Rong M., Ruan W. Studies on the transformation process of PVDF from α to β phase by stretching. RSC Adv. 2014;4:3938–3943. doi: 10.1039/C3RA45134H. DOI
Liu G., Schneider K., Zheng L., Zhang X., Li C., Stamm M., Wang D. Stretching induced phase separation in poly(vinylidene fluoride)/poly(butylene succinate) blends studied by in-situ X-ray scattering. Polymer. 2014;55:2588–2596. doi: 10.1016/j.polymer.2014.03.055. DOI
Sharma M., Madras G., Bose S. Process induced electroactive β-polymorph in PVDF: Effect on dielectric and ferroelectric properties. Phys. Chem. Chem. Phys. 2014;16:14792–14799. doi: 10.1039/c4cp01004c. PubMed DOI
Kim G.H., Hong S.M., Seo Y. Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys. Chem. Chem. Phys. 2009;11:10506–10512. doi: 10.1039/b912801h. PubMed DOI
Lei T., Cai X., Wang X., Yu L., Hu X., Zheng G., Lv W., Wang L., Wu D., Sun D., et al. Spectroscopic evidence for a high fraction of ferroelectric phase induced in electrospun polyvinylidene fluoride fibers. RSC Adv. 2013;3:24952–24958. doi: 10.1039/c3ra42622j. DOI
Fang J., Niu H., Wang H., Wang X., Lin T. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 2013;6:2196–2202. doi: 10.1039/c3ee24230g. DOI
Fang J., Wang X., Lin T. Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J. Mater. Chem. 2011;21:11088–11091. doi: 10.1039/c1jm11445j. DOI
Lund A., Gustafsson C., Bertilsson H., Rychwalski R.W. Enhancement of β phase crystals formation with the use of nanofillers in PVDF films and fibres. Compos. Sci. Technol. 2011;71:222–229. doi: 10.1016/j.compscitech.2010.11.014. DOI
Mofokeng T.G., Luyt A.S., Pavlović V.P., Pavlović V.B., Dudić D., Vlahović B., Djoković V. Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. J. Appl. Phys. 2014;115:084109. doi: 10.1063/1.4866694. DOI
Zhang Y.Y., Jiang S.L., Yu Y., Zeng Y., Zhang G.Z., Zhang Q.F., He J.G. Crystallization behavior and phase-transformation mechanism with the use of graphite nanosheets in poly(vinylidene fluoride) nanocomposites. J. Appl. Polym. Sci. 2012;125:E314–E319. doi: 10.1002/app.35627. DOI
Thangavel E., Ramasundaram S., Pitchaimuthu S., Hong S.W., Lee S.Y., Yoo S.-S., Kim D.-E., Ito E., Kang Y.S. Structural and tribological characteristics of poly(vinylidene fluoride)/functionalized graphene oxide nanocomposite thin films. Compos. Sci. Technol. 2014;90:187–192. doi: 10.1016/j.compscitech.2013.11.007. DOI
Jia N., Xing Q., Xia G., Sun J., Song R., Huang W. Enhanced β-crystalline phase in poly(vinylidene fluoride) films by polydopamine-coated BaTiO3 nanoparticles. Mater. Lett. 2015;139:212–215. doi: 10.1016/j.matlet.2014.10.069. DOI
Guan X., Zhang Y., Li H., Ou J. PZT/PVDF composites doped with carbon nanotubes. Sens. Actuators A Phys. 2013;194:228–231. doi: 10.1016/j.sna.2013.02.005. DOI
Jaleh B., Fakhri P., Noroozi M., Muensit N. Influence of Copper Nanoparticles Concentration on the Properties of Poly(vinylidene fluoride)/Cu Nanoparticles Nanocomposite Films. J. Inorg. Organomet. Polym. Mater. 2012;22:878–885. doi: 10.1007/s10904-012-9660-5. DOI
Vasundhara K., Mandal B.P., Tyagi A. Enhancement of dielectric permittivity and ferroelectricity of a modified cobalt nanoparticle and polyvinylidene fluoride based composite. RSC Adv. 2015;5:8591–8597. doi: 10.1039/C4RA09292A. DOI
Miranda D., Sencadas V., Sánchez-Iglesias A., Pastorizasantos I., Liz-Marzán L.M., Ribelles J.L.G., Lanceros-Mendez S. Influence of Silver Nanoparticles Concentration on the α- to β-Phase Transformation and the Physical Properties of Silver Nanoparticles Doped Poly(vinylidene fluoride) Nanocomposites. J. Nanosci. Nanotechnol. 2009;9:2910–2916. doi: 10.1166/jnn.2009.208. PubMed DOI
Indolia A.P., Gaur M.S. Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. J. Therm. Anal. Calorim. 2012;113:821–830. doi: 10.1007/s10973-012-2834-0. DOI
Ourry L., Marchesini S., Bibani M., Mercone S., Ammar S., Mammeri F. Influence of nanoparticle size and concentration on the electroactive phase content of PVDF in PVDF-CoFe2O4-based hybrid films. Phys. Status Solidi (a) 2014;212:252–258. doi: 10.1002/pssa.201431563. DOI
An N., Liu H., Ding Y., Zhang M., Tang Y. Preparation and electroactive properties of a PVDF/nano-TiO2 composite film. Appl. Surf. Sci. 2011;257:3831–3835. doi: 10.1016/j.apsusc.2010.12.076. DOI
Jaleh B., Jabbari A. Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl. Surf. Sci. 2014;320:339–347. doi: 10.1016/j.apsusc.2014.09.030. DOI
Loh K.J., Chang D. Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing. J. Mater. Sci. 2011;46:228–237. doi: 10.1007/s10853-010-4940-3. DOI
Li Z., Zhang X., Li G. In situ ZnO nanowire growth to promote the PVDF piezo phase and the ZnO–PVDF hybrid self-rectified nanogenerator as a touch sensor. Phys. Chem. Chem. Phys. 2014;16:5475–5479. doi: 10.1039/c3cp54083a. PubMed DOI
Fang L., Wu W., Huang X., He J., Jiang P. Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Compos. Sci. Technol. 2015;107:67–74. doi: 10.1016/j.compscitech.2014.12.009. DOI
Zheng Y., Zheng L., Zhan Y., Lin X., Zheng A.Q., Wei K. Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis. Inorg. Chem. 2007;46:6980–6986. doi: 10.1021/ic700688f. PubMed DOI
Zhao L., Chen X., Wang X., Zhang Y., Wei W., Sun Y., Antonietti M., Titirici M.-M. One-Step Solvothermal Synthesis of a Carbon@TiO2 Dyade Structure Effectively Promoting Visible-Light Photocatalysis. Adv. Mater. 2010;22:3317–3321. doi: 10.1002/adma.201000660. PubMed DOI
Guo C., Ge M., Liu L., Gao G., Feng Y., Wang Y. Directed Synthesis of Mesoporous TiO2 Microspheres: Catalysts and Their Photocatalysis for Bisphenol A Degradation. Environ. Sci. Technol. 2010;44:419–425. doi: 10.1021/es9019854. PubMed DOI
Bazant P., Kuritka I., Munster L., Machovsky M., Kozakova Z., Saha P. Hybrid nanostructured Ag/ZnO decorated powder cellulose fillers for medical plastics with enhanced surface antibacterial activity. J. Mater. Sci. Mater. Med. 2014;25:2501–2512. doi: 10.1007/s10856-014-5274-5. PubMed DOI
Sedlačík M., Mrlik M., Kozáková Z., Pavlínek V., Kuritka I. Synthesis and electrorheology of rod-like titanium oxide particles prepared via microwave-assisted molten-salt method. Colloid Polym. Sci. 2012;291:1105–1111. doi: 10.1007/s00396-012-2834-4. DOI
Machovsky M., Kuritka I., Kozakova Z. Microwave assisted synthesis of nanostructured Fe3O4/ZnO microparticles. Mater. Lett. 2012;86:136–138. doi: 10.1016/j.matlet.2012.07.038. DOI
Plachý T., Mrlik M., Kozáková Z., Suly P., Sedlačík M., Pavlínek V., Kuritka I. The Electrorheological Behavior of Suspensions Based on Molten-Salt Synthesized Lithium Titanate Nanoparticles and Their Core–Shell Titanate/Urea Analogues. ACS Appl. Mater. Interfaces. 2015;7:3725–3731. doi: 10.1021/am508471f. PubMed DOI
Pan X., Wang Z., Cao Z., Zhang S., He Y., Zhang Y., Chen K., Hu Y., Gu H. A self-powered vibration sensor based on electrospun poly(vinylidene fluoride) nanofibres with enhanced piezoelectric response. Smart Mater. Struct. 2016;25:105010. doi: 10.1088/0964-1726/25/10/105010. DOI
Liu Z., Pan C., Su C.-Y., Lin L., Chen Y., Tsai J. A flexible sensing device based on a PVDF/MWCNT composite nanofiber array with an interdigital electrode. Sens. Actuators A Phys. 2014;211:78–88. doi: 10.1016/j.sna.2014.03.012. DOI
Ram F., Gudadhe A., Vijayakanth T., Aherrao S., Borkar V., Boomishankar R., Shanmuganathan K. Nanocellulose Reinforced Flexible Composite Nanogenerators with Enhanced Vibrational Energy Harvesting and Sensing Properties. ACS Appl. Polym. Mater. 2020;2:2550–2562. doi: 10.1021/acsapm.0c00158. DOI
Zhao S., Erturk A. Deterministic and band-limited stochastic energy harvesting from uniaxial excitation of a multilayer piezoelectric stack. Sens. Actuators A Phys. 2014;214:58–65. doi: 10.1016/j.sna.2014.04.019. DOI
Shehata N., Kandas I., Hassounah I., Sobolciak P., Krupa I., Mrlik M., Popelka A., Steadman J., Lewis R.V. Piezoresponse, Mechanical, and Electrical Characteristics of Synthetic Spider Silk Nanofibers. Nanomaterials. 2018;8:585. doi: 10.3390/nano8080585. PubMed DOI PMC
Byzynski G., Melo C., Volanti D.P., Ferrer M.M., Gouveia A.F., Ribeiro C., Andrés J., Longo E. The interplay between morphology and photocatalytic activity in ZnO and N-doped ZnO crystals. Mater. Des. 2017;120:363–375. doi: 10.1016/j.matdes.2017.02.020. DOI
Machovsky M., Mrlik M., Kuritka I., Pavlinek V., Babayan V. Novel synthesis of core–shell urchin-like ZnO coated carbonyl iron microparticles and their magnetorheological activity. RSC Adv. 2014;4:996–1003. doi: 10.1039/C3RA44982C. DOI
Issa A.A., Al-Maadeed M., Luyt A.S., Mrlik M., Hassan M.K. Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano)fibers. J. Appl. Polym. Sci. 2016;133:12. doi: 10.1002/app.43594. DOI
Částková K., Kastyl J., Sobola D., Petruš J., Stastna E., Riha D., Tofel P. Structure–Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC
Florczak S., Lorson T., Zheng T., Mrlik M., Hutmacher D.W., Higgins M.J., Luxenhofer R., Dalton P.D. Melt electrowriting of electroactive poly(vinylidene difluoride) fibers. Polym. Int. 2019;68:735–745. doi: 10.1002/pi.5759. DOI
Salimi A., Yousefi A. Analysis Method. Polym. Test. 2003;22:699–704. doi: 10.1016/S0142-9418(03)00003-5. DOI
Liu J., Lu X., Wu C., Zhao C. Effect of preparation conditions on the morphology, polymorphism and mechanical properties of polyvinylidene fluoride membranes formed via thermally induced phase separation. J. Polym. Res. 2013;20:10. doi: 10.1007/s10965-013-0321-3. DOI
Mrlik M., Leadenham S., Almaadeed M.A., Erturk A. Figure of merit comparison of PP-based electret and PVDF-based piezoelectric polymer energy harvesters; Proceedings of the SPIE 9799: Active and Passive Smart Structures and Integrated Systems; Las Vegas, NE, USA. 21–24 March 2016; p. 979923. DOI