Comparative Study of PVDF Sheets and Their Sensitivity to Mechanical Vibrations: The Role of Dimensions, Molecular Weight, Stretching and Poling

. 2021 Jun 22 ; 11 (7) : . [epub] 20210622

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34206686

Grantová podpora
19-17457S Grantová Agentura České Republiky
DRKVO RP/CPS/2020/003 Ministerstvo Školství, Mládeže a Tělovýchovy
CA18203 European Cooperation in Science and Technology

This paper is focused on the comparative study of the vibration sensing capabilities of poly(vinylidene fluoride) (PVDF) sheets. The main parameters such as molecular weight, initial sample thickness, stretching and poling were systematically applied, and their impact on sensing behavior was examined. The mechanical properties of prepared sheets were investigated via tensile testing on the samples with various initial thicknesses. The transformation of the α-phase to the electro-active β-phase was analyzed using FTIR after applying stretching and poling procedures as crucial post-processing techniques. As a complementary method, the XRD was applied, and it confirmed the crystallinity data resulting from the FTIR analysis. The highest degree of phase transformation was found in the PVDF sheet with a moderate molecular weight (Mw of 275 kDa) after being subjected to the highest axial elongation (500%); in this case, the β-phase content reached approximately 90%. Finally, the vibration sensing capability was systematically determined, and all the mentioned processing/molecular parameters were taken into consideration. The whole range of the elongations (from 50 to 500%) applied on the PVDF sheets with an Mw of 180 and 275 kDa and an initial thickness of 0.5 mm appeared to be sufficient for vibration sensing purposes, showing a d33 piezoelectric charge coefficient from 7 pC N-1 to 9.9 pC N-1. In terms of the d33, the PVDF sheets were suitable regardless of their Mw only after applying the elongation of 500%. Among all the investigated samples, those with an initial thickness of 1.0 mm did not seem to be suitable for vibration sensing purposes.

Zobrazit více v PubMed

Farrar C.R., Doebling S.W., Nix D.A. Vibration-based structural damage identification. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 2001;359:131–149. doi: 10.1098/rsta.2000.0717. DOI

Qing X.L., Li W.Z., Wang Y.S., Sun H. Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications. Sensors. 2019;19:545. doi: 10.3390/s19030545. PubMed DOI PMC

Magalhaes F., Cunha A., Caetano E. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection. Mech. Syst. Signal Proc. 2012;28:212–228. doi: 10.1016/j.ymssp.2011.06.011. DOI

Okosun F., Celikin M., Pakrashi V. A Numerical Model for Experimental Designs of Vibration-Based Leak Detection and Monitoring of Water Pipes Using Piezoelectric Patches. Sensors. 2020;20:6708. doi: 10.3390/s20236708. PubMed DOI PMC

Avendano-Valencia L.D., Fassois S.D. Gaussian Mixture Random Coefficient model based framework for SHM in structures with time-dependent dynamics under uncertainty. Mech. Syst. Signal Proc. 2017;97:59–83. doi: 10.1016/j.ymssp.2017.04.016. DOI

Staszewski W.J., Mahzan S., Traynor R. Health monitoring of aerospace composite structures—Active and passive approach. Compos. Sci. Technol. 2009;69:1678–1685. doi: 10.1016/j.compscitech.2008.09.034. DOI

Zelenika S., Hadas Z., Bader S., Becker T., Gljuscic P., Hlinka J., Janak L., Kamenar E., Ksica F., Kyratsi T., et al. Energy Harvesting Technologies for Structural Health Monitoring of Airplane Components—A Review. Sensors. 2020;20:6685. doi: 10.3390/s20226685. PubMed DOI PMC

Anton S.R., Sodano H.A. A review of power harvesting using piezoelectric materials (2003–2006) Smart Mater. Struct. 2007;16:R1–R21. doi: 10.1088/0964-1726/16/3/R01. DOI

Bai Y., Tofel P., Hadas Z., Smilek J., Losak P., Skarvada P., Macku R. Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input. Mech. Syst. Signal Proc. 2018;106:303–318. doi: 10.1016/j.ymssp.2018.01.006. DOI

Hadas Z., Janak L., Smilek J. Virtual prototypes of energy harvesting systems for industrial applications. Mech. Syst. Signal Proc. 2018;110:152–164. doi: 10.1016/j.ymssp.2018.03.036. DOI

Boccardi S., Ciampa F., Meo M. Design and development of a heatsink for thermo-electric power harvesting in aerospace applications. Smart Mater. Struct. 2019;28:12. doi: 10.1088/1361-665X/aacbac. DOI

Zhao J.X., Mu J.L., Cui H.R., He W.J., Zhang L., He J., Gao X., Li Z.Y., Hou X.J., Chou X.J. Hybridized Triboelectric-Electromagnetic Nanogenerator for Wind Energy Harvesting to Realize Real-Time Power Supply of Sensor Nodes. Adv. Mater. Technol. 2021 doi: 10.1002/admt.202001022. DOI

Ochoa P., Groves R.M., Benedictus R. Systematic multiparameter design methodology for an ultrasonic health monitoring system for full-scale composite aircraft primary structures. Struct. Control. Health Monit. 2019;26:23. doi: 10.1002/stc.2340. DOI

Qiu L., Deng X.L., Yuan S.F., Huang Y.A., Ren Y.Q. Impact Monitoring for Aircraft Smart Composite Skins Based on a Lightweight Sensor Network and Characteristic Digital Sequences. Sensors. 2018;18:2218. doi: 10.3390/s18072218. PubMed DOI PMC

Martins P., Lopes A.C., Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014;39:683–706. doi: 10.1016/j.progpolymsci.2013.07.006. DOI

Sajkiewicz P., Wasiak A., Goclowski Z. Phase transitions during stretching of poly(vinylidene fluoride) Eur. Polym. J. 1999;35:423–429. doi: 10.1016/S0014-3057(98)00136-0. DOI

Ting Y., Nugraha A., Chiu C.W., Gunawan H. Design and characterization of one-layer PVDF thin film for a 3D force sensor. Sens. Actuator A-Phys. 2016;250:129–137. doi: 10.1016/j.sna.2016.09.025. DOI

Kaura T., Nath R., Perlman M.M. Simultaneous stretching and corona poling of pvdf films. J. Phys. D-Appl. Phys. 1991;24:1848–1852. doi: 10.1088/0022-3727/24/10/020. DOI

Defebvin J., Barrau S., Lyskawa J., Woisel P., Lefebvre J.M. Influence of nitrodopamine-functionalized barium titanate content on the piezoelectric response of poly(vinylidene fluoride) based polymer-ceramic composites. Compos. Sci. Technol. 2017;147:16–21. doi: 10.1016/j.compscitech.2017.05.001. DOI

Chamakh M.M., Mrlik M., Leadenham S., Bazant P., Osicka J., AlMaadeed M.A., Erturk A., Kuritka I. Vibration Sensing Systems Based on Poly(Vinylidene Fluoride) and Microwave-Assisted Synthesized ZnO Star-Like Particles with Controllable Structural and Physical Properties. Nanomaterials. 2020;10:2345. doi: 10.3390/nano10122345. PubMed DOI PMC

Issa A.A., Al-Maadeed M.A.S., Mrlik M., Luyt A.S. Electrospun PVDF graphene oxide composite fibre mats with tunable physical properties. J. Polym. Res. 2016;23:13. doi: 10.1007/s10965-016-1126-y. DOI

Ribeiro C., Costa C.M., Correia D.M., Nunes-Pereira J., Oliveira J., Martins P., Goncalves R., Cardoso V.F., Lanceros-Mendez S. Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat. Protoc. 2018;13:681–704. doi: 10.1038/nprot.2017.157. PubMed DOI

Florczak S., Lorson T., Zheng T., Mrlik M., Hutmacher D.W., Higgins M.J., Luxenhofer R., Dalton P.D. Melt electrowriting of electroactive poly(vinylidene difluoride) fibers. Polym. Int. 2019;68:735–745. doi: 10.1002/pi.5759. DOI

Naik R., Rao T.S. Self-powered flexible piezoelectric nanogenerator made of poly (vinylidene fluoride)/Zirconium oxide nanocomposite. Mater. Res. Express. 2019;6:9. doi: 10.1088/2053-1591/ab49b3. DOI

Zheng Y.R., Zhang J., Sun X.L., Li H.H., Ren Z.J., Yan S.K. Crystal Structure Regulation of Ferroelectric Poly(vinylidene fluoride) via Controlled Melt-Recrystallization. Ind. Eng. Chem. Res. 2017;56:4580–4587. doi: 10.1021/acs.iecr.7b00543. DOI

Gaur A., Kumar C., Tiwari S., Maiti P. Efficient Energy Harvesting Using Processed Poly(vinylidene fluoride) Nanogenerator. ACS Appl. Energ. Mater. 2018;1:3019–3024. doi: 10.1021/acsaem.8b00483. DOI

Yu S.M., Wang G.C. Improving the dielectric performance of poly(vinylidene fluoride)/polyaniline nanorod composites by stretch-induced crystal transition. Polym. Int. 2018;67:1103–1111. doi: 10.1002/pi.5617. DOI

Zaarour B., Zhu L., Jin X.Y. Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Mater. 2019;17:181–189. doi: 10.1080/1539445X.2019.1582542. DOI

Drdlik D., Zeman D., Tofel P., Chlup Z., Hadraba H., Drdlikova K. A comparative study of direct and indirect evaluation of piezoelectric properties of electrophoreticaly deposited (Ba, Ca) (Zr, Ti)O-3 lead-free piezoceramics. Ceram. Int. 2021;47:2034–2042. doi: 10.1016/j.ceramint.2020.09.035. DOI

Bijalwan V., Erhart J., Spotz Z., Sobola D., Prajzler V., Tofel P., Maca K. Composition driven (Ba,Ca)(Zr,Ti)O3 lead-free ceramics with large quality factor and energy harvesting characteristics. J. Am. Ceram. Soc. 2021;104:1088–1101. doi: 10.1111/jace.17497. DOI

Bijalwan V., Tofel P., Spotz Z., Castkova K., Sobola D., Erhart J., Maca K. Processing of 0.55(Ba0.9Ca0.1)TiO3-0.45Ba(Sn0.2Ti0.8)O3 lead-free ceramics with high piezoelectricity. J. Am. Ceram. Soc. 2020;103:4611–4624. doi: 10.1111/jace.17090. DOI

Castkova K., Kastyl J., Sobola D., Petrus J., Stastna E., Riha D., Tofel P. Structure-Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC

Li L., Zhang M.Q., Rong M.Z., Ruan W.H. Studies on the transformation process of PVDF from alpha to beta phase by stretching. RSC Adv. 2014;4:3938–3943. doi: 10.1039/C3RA45134H. DOI

Liu R.Q., Wang X.X., Fu J., Zhang Q.Q., Song W.Z., Xu Y., Chen Y.Q., Ramakrishna S., Long Y.Z. Preparation of Nanofibrous PVDF Membrane by Solution Blow Spinning for Mechanical Energy Harvesting. Nanomaterials. 2019;9:1090. doi: 10.3390/nano9081090. PubMed DOI PMC

Fortunato M., Chandraiahgari C.R., De Bellis G., Ballirano P., Sarto F., Tamburrano A., Sarto M.S. Piezoelectric Effect and Electroactive Phase Nucleation in Self-Standing Films of Unpoled PVDF Nanocomposite Films. Nanomaterials. 2018;8:743. doi: 10.3390/nano8090743. PubMed DOI PMC

Issa A.A., Al-Maadeed M., Luyt A.S., Mrlik M., Hassan M.K. Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano)fibers. J. Appl. Polym. Sci. 2016;133:12. doi: 10.1002/app.43594. DOI

Kaspar P., Sobola D., Castkova K., Knapek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trcka T., Grmela L., et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers. 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC

Kaur G., Rana D.S. Synthesis and comprehensive study of polyvinylidene fluoride-nickel oxide-barium titanate (PVDF-NiO-BaTiO3) hybrid nanocomposite films for enhancement of the electroactive beta phase. J. Mater. Sci. Mater. Electron. 2020;31:18464–18476. doi: 10.1007/s10854-020-04390-8. DOI

Xu D.W., Zhang H.L., Pu L., Li L. Fabrication of Poly(vinylidene fluoride)/Multiwalled carbon nanotube nanocomposite foam via supercritical fluid carbon dioxide: Synergistic enhancement of piezoelectric and mechanical properties. Compos. Sci. Technol. 2020;192:9. doi: 10.1016/j.compscitech.2020.108108. DOI

Gebrekrstos A., Kar G.P., Madras G., Misra A., Bose S. Does the nature of chemically grafted polymer onto PVDF decide the extent of electroactive beta-polymorph? Polymer. 2019;181:10. doi: 10.1016/j.polymer.2019.121764. DOI

Mahanty B., Ghosh S.K., Jana S., Roy K., Sarkar S., Mandal D. All-fiber acousto-electric energy harvester from magnesium salt-modulated PVDF nanofiber. Sustain. Energ. Fuels. 2021;5:1003–1013. doi: 10.1039/D0SE01185A. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...