Comparative Study of PVDF Sheets and Their Sensitivity to Mechanical Vibrations: The Role of Dimensions, Molecular Weight, Stretching and Poling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-17457S
Grantová Agentura České Republiky
DRKVO RP/CPS/2020/003
Ministerstvo Školství, Mládeže a Tělovýchovy
CA18203
European Cooperation in Science and Technology
PubMed
34206686
PubMed Central
PMC8305835
DOI
10.3390/nano11071637
PII: nano11071637
Knihovny.cz E-zdroje
- Klíčová slova
- crystallinity, d33, physical properties, poly(vinylidene fluoride), vibration sensing,
- Publikační typ
- časopisecké články MeSH
This paper is focused on the comparative study of the vibration sensing capabilities of poly(vinylidene fluoride) (PVDF) sheets. The main parameters such as molecular weight, initial sample thickness, stretching and poling were systematically applied, and their impact on sensing behavior was examined. The mechanical properties of prepared sheets were investigated via tensile testing on the samples with various initial thicknesses. The transformation of the α-phase to the electro-active β-phase was analyzed using FTIR after applying stretching and poling procedures as crucial post-processing techniques. As a complementary method, the XRD was applied, and it confirmed the crystallinity data resulting from the FTIR analysis. The highest degree of phase transformation was found in the PVDF sheet with a moderate molecular weight (Mw of 275 kDa) after being subjected to the highest axial elongation (500%); in this case, the β-phase content reached approximately 90%. Finally, the vibration sensing capability was systematically determined, and all the mentioned processing/molecular parameters were taken into consideration. The whole range of the elongations (from 50 to 500%) applied on the PVDF sheets with an Mw of 180 and 275 kDa and an initial thickness of 0.5 mm appeared to be sufficient for vibration sensing purposes, showing a d33 piezoelectric charge coefficient from 7 pC N-1 to 9.9 pC N-1. In terms of the d33, the PVDF sheets were suitable regardless of their Mw only after applying the elongation of 500%. Among all the investigated samples, those with an initial thickness of 1.0 mm did not seem to be suitable for vibration sensing purposes.
Centre of Polymer Systems Tomas Bata University in Zlín Třída T Bati 5678 760 01 Zlín Czech Republic
Polymer Institute Slovak Academy of Sciences Dubravská cesta 9 845 45 Bratislava Slovakia
Zobrazit více v PubMed
Farrar C.R., Doebling S.W., Nix D.A. Vibration-based structural damage identification. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 2001;359:131–149. doi: 10.1098/rsta.2000.0717. DOI
Qing X.L., Li W.Z., Wang Y.S., Sun H. Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications. Sensors. 2019;19:545. doi: 10.3390/s19030545. PubMed DOI PMC
Magalhaes F., Cunha A., Caetano E. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection. Mech. Syst. Signal Proc. 2012;28:212–228. doi: 10.1016/j.ymssp.2011.06.011. DOI
Okosun F., Celikin M., Pakrashi V. A Numerical Model for Experimental Designs of Vibration-Based Leak Detection and Monitoring of Water Pipes Using Piezoelectric Patches. Sensors. 2020;20:6708. doi: 10.3390/s20236708. PubMed DOI PMC
Avendano-Valencia L.D., Fassois S.D. Gaussian Mixture Random Coefficient model based framework for SHM in structures with time-dependent dynamics under uncertainty. Mech. Syst. Signal Proc. 2017;97:59–83. doi: 10.1016/j.ymssp.2017.04.016. DOI
Staszewski W.J., Mahzan S., Traynor R. Health monitoring of aerospace composite structures—Active and passive approach. Compos. Sci. Technol. 2009;69:1678–1685. doi: 10.1016/j.compscitech.2008.09.034. DOI
Zelenika S., Hadas Z., Bader S., Becker T., Gljuscic P., Hlinka J., Janak L., Kamenar E., Ksica F., Kyratsi T., et al. Energy Harvesting Technologies for Structural Health Monitoring of Airplane Components—A Review. Sensors. 2020;20:6685. doi: 10.3390/s20226685. PubMed DOI PMC
Anton S.R., Sodano H.A. A review of power harvesting using piezoelectric materials (2003–2006) Smart Mater. Struct. 2007;16:R1–R21. doi: 10.1088/0964-1726/16/3/R01. DOI
Bai Y., Tofel P., Hadas Z., Smilek J., Losak P., Skarvada P., Macku R. Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input. Mech. Syst. Signal Proc. 2018;106:303–318. doi: 10.1016/j.ymssp.2018.01.006. DOI
Hadas Z., Janak L., Smilek J. Virtual prototypes of energy harvesting systems for industrial applications. Mech. Syst. Signal Proc. 2018;110:152–164. doi: 10.1016/j.ymssp.2018.03.036. DOI
Boccardi S., Ciampa F., Meo M. Design and development of a heatsink for thermo-electric power harvesting in aerospace applications. Smart Mater. Struct. 2019;28:12. doi: 10.1088/1361-665X/aacbac. DOI
Zhao J.X., Mu J.L., Cui H.R., He W.J., Zhang L., He J., Gao X., Li Z.Y., Hou X.J., Chou X.J. Hybridized Triboelectric-Electromagnetic Nanogenerator for Wind Energy Harvesting to Realize Real-Time Power Supply of Sensor Nodes. Adv. Mater. Technol. 2021 doi: 10.1002/admt.202001022. DOI
Ochoa P., Groves R.M., Benedictus R. Systematic multiparameter design methodology for an ultrasonic health monitoring system for full-scale composite aircraft primary structures. Struct. Control. Health Monit. 2019;26:23. doi: 10.1002/stc.2340. DOI
Qiu L., Deng X.L., Yuan S.F., Huang Y.A., Ren Y.Q. Impact Monitoring for Aircraft Smart Composite Skins Based on a Lightweight Sensor Network and Characteristic Digital Sequences. Sensors. 2018;18:2218. doi: 10.3390/s18072218. PubMed DOI PMC
Martins P., Lopes A.C., Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014;39:683–706. doi: 10.1016/j.progpolymsci.2013.07.006. DOI
Sajkiewicz P., Wasiak A., Goclowski Z. Phase transitions during stretching of poly(vinylidene fluoride) Eur. Polym. J. 1999;35:423–429. doi: 10.1016/S0014-3057(98)00136-0. DOI
Ting Y., Nugraha A., Chiu C.W., Gunawan H. Design and characterization of one-layer PVDF thin film for a 3D force sensor. Sens. Actuator A-Phys. 2016;250:129–137. doi: 10.1016/j.sna.2016.09.025. DOI
Kaura T., Nath R., Perlman M.M. Simultaneous stretching and corona poling of pvdf films. J. Phys. D-Appl. Phys. 1991;24:1848–1852. doi: 10.1088/0022-3727/24/10/020. DOI
Defebvin J., Barrau S., Lyskawa J., Woisel P., Lefebvre J.M. Influence of nitrodopamine-functionalized barium titanate content on the piezoelectric response of poly(vinylidene fluoride) based polymer-ceramic composites. Compos. Sci. Technol. 2017;147:16–21. doi: 10.1016/j.compscitech.2017.05.001. DOI
Chamakh M.M., Mrlik M., Leadenham S., Bazant P., Osicka J., AlMaadeed M.A., Erturk A., Kuritka I. Vibration Sensing Systems Based on Poly(Vinylidene Fluoride) and Microwave-Assisted Synthesized ZnO Star-Like Particles with Controllable Structural and Physical Properties. Nanomaterials. 2020;10:2345. doi: 10.3390/nano10122345. PubMed DOI PMC
Issa A.A., Al-Maadeed M.A.S., Mrlik M., Luyt A.S. Electrospun PVDF graphene oxide composite fibre mats with tunable physical properties. J. Polym. Res. 2016;23:13. doi: 10.1007/s10965-016-1126-y. DOI
Ribeiro C., Costa C.M., Correia D.M., Nunes-Pereira J., Oliveira J., Martins P., Goncalves R., Cardoso V.F., Lanceros-Mendez S. Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat. Protoc. 2018;13:681–704. doi: 10.1038/nprot.2017.157. PubMed DOI
Florczak S., Lorson T., Zheng T., Mrlik M., Hutmacher D.W., Higgins M.J., Luxenhofer R., Dalton P.D. Melt electrowriting of electroactive poly(vinylidene difluoride) fibers. Polym. Int. 2019;68:735–745. doi: 10.1002/pi.5759. DOI
Naik R., Rao T.S. Self-powered flexible piezoelectric nanogenerator made of poly (vinylidene fluoride)/Zirconium oxide nanocomposite. Mater. Res. Express. 2019;6:9. doi: 10.1088/2053-1591/ab49b3. DOI
Zheng Y.R., Zhang J., Sun X.L., Li H.H., Ren Z.J., Yan S.K. Crystal Structure Regulation of Ferroelectric Poly(vinylidene fluoride) via Controlled Melt-Recrystallization. Ind. Eng. Chem. Res. 2017;56:4580–4587. doi: 10.1021/acs.iecr.7b00543. DOI
Gaur A., Kumar C., Tiwari S., Maiti P. Efficient Energy Harvesting Using Processed Poly(vinylidene fluoride) Nanogenerator. ACS Appl. Energ. Mater. 2018;1:3019–3024. doi: 10.1021/acsaem.8b00483. DOI
Yu S.M., Wang G.C. Improving the dielectric performance of poly(vinylidene fluoride)/polyaniline nanorod composites by stretch-induced crystal transition. Polym. Int. 2018;67:1103–1111. doi: 10.1002/pi.5617. DOI
Zaarour B., Zhu L., Jin X.Y. Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Mater. 2019;17:181–189. doi: 10.1080/1539445X.2019.1582542. DOI
Drdlik D., Zeman D., Tofel P., Chlup Z., Hadraba H., Drdlikova K. A comparative study of direct and indirect evaluation of piezoelectric properties of electrophoreticaly deposited (Ba, Ca) (Zr, Ti)O-3 lead-free piezoceramics. Ceram. Int. 2021;47:2034–2042. doi: 10.1016/j.ceramint.2020.09.035. DOI
Bijalwan V., Erhart J., Spotz Z., Sobola D., Prajzler V., Tofel P., Maca K. Composition driven (Ba,Ca)(Zr,Ti)O3 lead-free ceramics with large quality factor and energy harvesting characteristics. J. Am. Ceram. Soc. 2021;104:1088–1101. doi: 10.1111/jace.17497. DOI
Bijalwan V., Tofel P., Spotz Z., Castkova K., Sobola D., Erhart J., Maca K. Processing of 0.55(Ba0.9Ca0.1)TiO3-0.45Ba(Sn0.2Ti0.8)O3 lead-free ceramics with high piezoelectricity. J. Am. Ceram. Soc. 2020;103:4611–4624. doi: 10.1111/jace.17090. DOI
Castkova K., Kastyl J., Sobola D., Petrus J., Stastna E., Riha D., Tofel P. Structure-Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC
Li L., Zhang M.Q., Rong M.Z., Ruan W.H. Studies on the transformation process of PVDF from alpha to beta phase by stretching. RSC Adv. 2014;4:3938–3943. doi: 10.1039/C3RA45134H. DOI
Liu R.Q., Wang X.X., Fu J., Zhang Q.Q., Song W.Z., Xu Y., Chen Y.Q., Ramakrishna S., Long Y.Z. Preparation of Nanofibrous PVDF Membrane by Solution Blow Spinning for Mechanical Energy Harvesting. Nanomaterials. 2019;9:1090. doi: 10.3390/nano9081090. PubMed DOI PMC
Fortunato M., Chandraiahgari C.R., De Bellis G., Ballirano P., Sarto F., Tamburrano A., Sarto M.S. Piezoelectric Effect and Electroactive Phase Nucleation in Self-Standing Films of Unpoled PVDF Nanocomposite Films. Nanomaterials. 2018;8:743. doi: 10.3390/nano8090743. PubMed DOI PMC
Issa A.A., Al-Maadeed M., Luyt A.S., Mrlik M., Hassan M.K. Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano)fibers. J. Appl. Polym. Sci. 2016;133:12. doi: 10.1002/app.43594. DOI
Kaspar P., Sobola D., Castkova K., Knapek A., Burda D., Orudzhev F., Dallaev R., Tofel P., Trcka T., Grmela L., et al. Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes. Polymers. 2020;12:2766. doi: 10.3390/polym12122766. PubMed DOI PMC
Kaur G., Rana D.S. Synthesis and comprehensive study of polyvinylidene fluoride-nickel oxide-barium titanate (PVDF-NiO-BaTiO3) hybrid nanocomposite films for enhancement of the electroactive beta phase. J. Mater. Sci. Mater. Electron. 2020;31:18464–18476. doi: 10.1007/s10854-020-04390-8. DOI
Xu D.W., Zhang H.L., Pu L., Li L. Fabrication of Poly(vinylidene fluoride)/Multiwalled carbon nanotube nanocomposite foam via supercritical fluid carbon dioxide: Synergistic enhancement of piezoelectric and mechanical properties. Compos. Sci. Technol. 2020;192:9. doi: 10.1016/j.compscitech.2020.108108. DOI
Gebrekrstos A., Kar G.P., Madras G., Misra A., Bose S. Does the nature of chemically grafted polymer onto PVDF decide the extent of electroactive beta-polymorph? Polymer. 2019;181:10. doi: 10.1016/j.polymer.2019.121764. DOI
Mahanty B., Ghosh S.K., Jana S., Roy K., Sarkar S., Mandal D. All-fiber acousto-electric energy harvester from magnesium salt-modulated PVDF nanofiber. Sustain. Energ. Fuels. 2021;5:1003–1013. doi: 10.1039/D0SE01185A. DOI