From Brush to Dendritic Structure: Tool for Tunable Interfacial Compatibility between the Iron-Based Particles and Silicone Oil in Magnetorheological Fluids

. 2024 Mar 12 ; 40 (10) : 5297-5305. [epub] 20240302

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38430189

Comprehensive magnetic particle stability together with compatibility between them and liquid medium (silicone oil) is still a crucial issue in the case of magnetorheological (MR) suspensions to guarantee their overall stability and MR performance. Therefore, this study is aimed at improving the interfacial stability between the carbonyl iron (CI) particles and silicone oil. In this respect, the particles were modified with polymer brushes and dendritic structures of poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS), called CI-brushes or CI-dendrites, respectively, and their stability properties (corrosion, thermo-oxidation, and sedimentation) were compared to neat CI ones. Compatibility of the obtained particles and silicone oil was investigated using contact angle and off-state viscosity investigation. Finally, the magneto-responsive capabilities in terms of yield stress and reproducibility of the MR phenomenon were thoroughly investigated. It was found that MR suspensions based on CI-brushes had significantly improved compatibility properties than those of neat CI ones; however, the CI-dendrites-based suspension possessed the best capabilities, while the MR performance was negligibly suppressed.

Zobrazit více v PubMed

Mekhzoum M. E. M.; Qaiss A.; Kacem El; Bouhfid R.. Introduction: Different Types of Smart Materials and Their Practical Applications; In Polymer Nanocomposite-Based Smart Materials: From Synthesis to Application; Bouhfid R.; Qaiss A.; Kacem El; Jawaid M., Eds.; Woodhead Publishing: Duxford, 2020; pp. 1–19. doi:10.1016/B978-0-08-103013-4.00001-7. DOI

Ramakrishnan T.; Kumar S. S.; Chelladurai S. J. S.; Gnanasekaran S.; Sivananthan S.; Geetha N. K.; Arthanari R.; Assefa G. B. Recent Developments in Stimuli Responsive Smart Materials and Applications: An Overview. J. Nanomater. 2022, 2022, 4031059.10.1155/2022/4031059. DOI

Qader I. N.; Kök M.; Dagdelen F.; Aydogdu Y. A Review of Smart Materials: Researches and Applications. El-Cezeri J. Sci. Eng. 2019, 6 (3), 755–788. 10.31202/ecjse.562177. DOI

Mrlík M.; Osička J.; Cvek M.; Ilčíková M.; Srnec P.; Gorgol D.; Tofel P. Comparative Study of Pvdf Sheets and Their Sensitivity to Mechanical Vibrations: The Role of Dimensions, Molecular Weight, Stretching and Poling. Nanomaterials 2021, 11 (7), 1637.10.3390/nano11071637. PubMed DOI PMC

Krupa I.; Sobolčiak P.; Mrlik M. Smart Non-Woven Fiber Mats with Light-Induced Sensing Capability. Nanomaterials 2020, 10 (1), 77.10.3390/nano10010077. PubMed DOI PMC

Kinoshita T.; Haketa Y.; Maeda H.; Fukuhara G. Ground- And Excited-State Dynamic Control of an Anion Receptor by Hydrostatic Pressure. Chem. Sci. 2021, 12 (19), 6691–6698. 10.1039/D1SC00664A. PubMed DOI PMC

Cvek M.; Zahoranova A.; Mrlik M.; Sramkova P.; Minarik A.; Sedlacik M. Poly(2-Oxazoline)-Based Magnetic Hydrogels: Synthesis, Performance and Cytotoxicity. Colloids Surfaces B Biointerfaces 2020, 190, 11091210.1016/j.colsurfb.2020.110912. PubMed DOI

Machovský M.; Mrlík M.; Plachý T.; Kuřitka I.; Pavlínek V.; Kožáková Z.; Kitano T. The Enhanced Magnetorheological Performance of Carbonyl Iron Suspensions Using Magnetic Fe3O4/ZHS Hybrid Composite Sheets. RSC Adv. 2015, 5, 19213–19219. 10.1039/C4RA14054K. DOI

Cvek M.; Mrlík M.; Ilčíková M.; Mosnáček J.; Münster L.; Pavlínek V. Synthesis of Silicone Elastomers Containing Silyl-Based Polymer-Grafted Carbonyl Iron Particles: An Efficient Way to Improve Magnetorheological, Damping, and Sensing Performances. Macromolecules 2017, 50 (5), 2189–2200. 10.1021/acs.macromol.6b02041. DOI

Mrlík M.; Ilčíková M.; Cvek M.; Pavlínek V.; Zahoranová A.; Kroneková Z.; Kasak P. Carbonyl Iron Coated with a Sulfobetaine Moiety as a Biocompatible System and the Magnetorheological Performance of Its Silicone Oil Suspensions. RSC Adv. 2016, 6 (39), 32823–32830. 10.1039/C6RA03919G. DOI

Zygo M.; Mrlik M.; Ilcikova M.; Hrabalikova M.; Osicka J.; Cvek M.; Sedlacik M.; Hanulikova B.; Munster L.; Skoda D.; Urbánek P.; Pietrasik J.; Mosnáček J. Effect of Structure of Polymers Grafted from Graphene Oxide on the Compatibility of Particles with a Silicone-Based Environment and the Stimuli-Responsive Capabilities of Their Composites. Nanomaterials 2020, 10 (3), 591.10.3390/nano10030591. PubMed DOI PMC

Ilčíková M.; Mrlík M.; Babayan V.; Kasák P. Graphene Oxide Modified by Betaine Moieties for Improvement of Electrorheological Performance. RSC Adv. 2015, 5 (71), 57820–57827. 10.1039/C5RA08403B. DOI

Mrlík M.; Ilčíková M.; Plachý T.; Pavlínek V.; Špitalský Z.; Mosnáček J. Graphene Oxide Reduction during Surface-Initiated Atom Transfer Radical Polymerization of Glycidyl Methacrylate: Controlling Electro-Responsive Properties. Chem. Eng. J. 2016, 283, 717–720. 10.1016/j.cej.2015.08.013. DOI

Mrlik M.; Pavlinek V.; Cheng Q.; Saha P. Synthesis of Titanate/Polypyrrole Composite Rod-like Particles and the Role of Conducting Polymer on Electrorheological Efficiency. Int. J. Mod. Phys. B 2012, 26 (2), 1250007.10.1142/S0217979212500075. DOI

Danko M.; Kroneková Z.; Mrlik M.; Osicka J.; Bin Yousaf A.; Mihálová A.; Tkac J.; Kasak P. Sulfobetaines Meet Carboxybetaines: Modulation of Thermo- and Ion-Responsivity, Water Structure, Mechanical Properties, and Cell Adhesion. Langmuir 2019, 35 (5), 1391–1403. 10.1021/acs.langmuir.8b01592. PubMed DOI

Lübtow M. M.; Mrlik M.; Hahn L.; Altmann A.; Beudert M.; Lühmann T.; Luxenhofer R. Temperature-Dependent Rheological and Viscoelastic Investigation of a Poly(2-Methyl-2oxazoline)-b-Poly(2-Iso-Butyl-2-Oxazoline)-b-Poly(2-Methyl-2-Oxazoline)-Based Thermogelling Hydrogel. J. Funct. Biomater. 2019, 10 (3), 36.10.3390/jfb10030036. PubMed DOI PMC

Zahoranová A.; Mrlík M.; Tomanová K.; Kronek J.; Luxenhofer R. ABA and BAB Triblock Copolymers Based on 2-Methyl-2-Oxazoline and 2-n-Propyl-2-Oxazoline: Synthesis and Thermoresponsive Behavior in Water. Macromol. Chem. Phys. 2017, 218 (13), 1700031.10.1002/macp.201700031. DOI

Gaca M.; Ilcikova M.; Mrlik M.; Cvek M.; Vaulot C.; Urbanek P.; Pietrasik R.; Krupa I.; Pietrasik J. Impact of Ionic Liquids on the Processing and Photo-Actuation Behavior of SBR Composites Containing Graphene Nanoplatelets. Sensors Actuators, B Chem. 2021, 329, 12919510.1016/j.snb.2020.129195. DOI

Mosnáčková K.; Mrlík M.; Mičušík M.; Kleinová A.; Sasinková V.; Popelka A.; Opálková Šišková A.; Kasák P.; Dworak C. L.; Mosnáček J. Light-Responsive Hybrids Based on Carbon Nanotubes with Covalently Attached PHEMA- g-PCL Brushes. Macromolecules 2021, 54 (5), 2412–2426. 10.1021/acs.macromol.0c02701. DOI

Osicka J.; Mrlik M.; Ilcikova M.; Krupa I.; Sobolčiak P.; Plachý T.; Mosnáček J. Controllably Coated Graphene Oxide Particles with Enhanced Compatibility with Poly(Ethylene-Co-Propylene) Thermoplastic Elastomer for Excellent Photo-Mechanical Actuation Capability. React. Funct. Polym. 2020, 148, 10448710.1016/j.reactfunctpolym.2020.104487. DOI

Mrlík M.; Špírek M.; Al-Khori J.; Ahmad A. A.; Mosnaček J.; AlMaadeed M. A. A.; Kasák P. Mussel-Mimicking Sulfobetaine-Based Copolymer with Metal Tunable Gelation, Self-Healing and Antibacterial Capability. Arab. J. Chem. 2020, 13 (1), 193–204. 10.1016/j.arabjc.2017.03.009. DOI

Yang M.; Wang S. Q.; Liu Z.; Chen Y.; Zaworotko M. J.; Cheng P.; Ma J. G.; Zhang Z. Fabrication of Moisture-Responsive Crystalline Smart Materials for Water Harvesting and Electricity Transduction. J. Am. Chem. Soc. 2021, 143 (20), 7732–7739. 10.1021/jacs.1c01831. PubMed DOI

Xu Y.; Liao G.; Liu T.. Magneto-Sensitive Smart Materials and Magnetorheological Mechanism; In Nanofluid Flow in Porous Media; Kandelousi M. S.; Ameen S.; Ahtar M. S.; Shin H.-S., Eds.; IntechOpen, 2020. doi:10.5772/intechopen.84742. DOI

Kumar J. S.; Paul P. S.; Raghunathan G.; Alex D. G. A Review of Challenges and Solutions in the Preparation and Use of Magnetorheological Fluids. Int. J. Mech. Mater. Eng. 2019, 14, 13.10.1186/s40712-019-0109-2. DOI

Morillas J. R.; De Vicente J. Magnetorheology: A Review. Soft Matter 2020, 16 (42), 9614–9642. 10.1039/D0SM01082K. PubMed DOI

Eshgarf H.; Ahmadi Nadooshan A.; Raisi A. An Overview on Properties and Applications of Magnetorheological Fluids: Dampers, Batteries Valves and Brakes. J. Energy Storage 2022, 50, 10464810.1016/j.est.2022.104648. DOI

Ashtiani M.; Hashemabadi S. H.; Ghaffari A. A Review on the Magnetorheological Fluid Preparation and Stabilization. J. Magn. Magn. Mater. 2015, 374, 711–715. 10.1016/j.jmmm.2014.09.020. DOI

Aralikatti S. S.; Kumar H. Tool Vibration Isolation in Hard Turning Process with Magnetorheological Fluid Damper. J. Manuf. Process. 2023, 88, 202–219. 10.1016/j.jmapro.2023.01.044. DOI

Ha S. H.; Seong M. S.; Choi S. B. Design and Vibration Control of Military Vehicle Suspension System Using Magnetorheological Damper and Disc Spring. Smart Mater. Struct. 2013, 22 (6), 06500610.1088/0964-1726/22/6/065006. DOI

Attia E. M.; Elsodany N. M.; El-Gamal H. A.; Elgohary M. A. Theoretical and Experimental Study of Magneto-Rheological Fluid Disc Brake. Alexandria Eng. J. 2017, 56 (2), 189–200. 10.1016/j.aej.2016.11.017. DOI

Jinaga R.; Thimmaiah J.; Kolekar S.; Choi S. B. Design, Fabrication and Testing of a Magnetorheologic Fluid Braking System for Machine Tool Application. SN. Appl. Sci. 2019, 1, 328.10.1007/s42452-019-0236-7. DOI

Lo Sciuto G.; Kowol P.; Capizzi G. Modeling and Experimental Characterization of a Clutch Control Strategy Using a Magnetorheological Fluid. Fluids 2023, 8 (5), 145.10.3390/fluids8050145. DOI

Pisetskiy S.; Kermani M. High-Performance Magneto-Rheological Clutches for Direct-Drive Actuation: Design and Development. J. Intell. Mater. Syst. Struct. 2021, 32 (20), 2582–2600. 10.1177/1045389X211006902. PubMed DOI PMC

Yiping L. Design of Magnetorheological Fluid Dynamometer Which Electric Current and Resisting Moment Have Corresponding Relationship. Autom. Control Intell. Syst. 2014, 2 (2), 16–20. 10.11648/j.acis.20140202.11. DOI

Kang B. H.; Hwang J. H.; Choi S. B. A New Design Model of an Mr Shock Absorber for Aircraft Landing Gear Systems Considering Major and Minor Pressure Losses: Experimental Validation. Appl. Sci. 2021, 11 (17), 7895.10.3390/app11177895. DOI

Kamath G. M.; Wereley N. M.; Jolly M. R. Characterization of Magnetorheological Helicopter Lag Dampers. J. Am. Helicopter Soc. 1999, 44, 3.10.4050/jahs.44.234. DOI

Kumar S.; Sehgal R.; Wani M. F.; Sharma M. D. Stabilization and Tribological Properties of Magnetorheological (MR) Fluids: A Review. J. Magn. Magn. Mater. 2021, 538, 16829510.1016/j.jmmm.2021.168295. DOI

Wahid S. A.; Ismail I.; Aid S.; Rahim M. S. A. Magneto-Rheological Defects and Failures: A Review; In IOP Conference Series: Materials Science and Engineering, Vol. 114, 2016, p. 012101. doi:10.1088/1757-899X/114/1/012101. DOI

Cvek M.; Mrlik M.; Ilcikova M.; Plachy T.; Sedlacik M.; Mosnacek J.; Pavlinek V. A Facile Controllable Coating of Carbonyl Iron Particles with Poly(Glycidyl Methacrylate): A Tool for Adjusting MR Response and Stability Properties. J. Mater. Chem. C 2015, 3 (18), 4646–4656. 10.1039/C5TC00319A. DOI

Mrlik M.; Pavlinek V. Magnetorheological Suspensions Based on Modified Carbonyl Iron Particles with an Extremely Thin Poly(n-Butyl Acrylate) Layer and Their Enhanced Stability Properties. Smart Mater. Struct. 2016, 25 (8), 08501110.1088/0964-1726/25/8/085011. DOI

Sutrisno J.; Fuchs A.; Sahin H.; Gordaninejad F. Surface Coated Iron Particles via Atom Transfer Radical Polymerization for Thermal-Oxidatively Stable High Viscosity Magnetorheological Fluid. J. Appl. Polym. Sci. 2013, 128 (1), 470–480. 10.1002/app.38199. DOI

Fang F. F.; Choi H. J.; Seo Y. Sequential Coating of Magnetic Carbonyliron Particles with Polystyrene and Multiwalled Carbon Nanotubes and Its Effect on Their Magnetorheology. ACS Appl. Mater. Interfaces 2010, 2 (1), 54–60. 10.1021/am900577w. PubMed DOI

Liu Y. D.; Choi H. J.; Choi S. B. Controllable Fabrication of Silica Encapsulated Soft Magnetic Microspheres with Enhanced Oxidation-Resistance and Their Rheology under Magnetic Field. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 403, 133–138. 10.1016/j.colsurfa.2012.04.002. DOI

Mrlík M.; Ilčíková M.; Pavlínek V.; Mosnáček J.; Peer P.; Filip P. Improved Thermooxidation and Sedimentation Stability of Covalently-Coated Carbonyl Iron Particles with Cholesteryl Groups and Their Influence on Magnetorheology. J. Colloid Interface Sci. 2013, 396, 146–151. 10.1016/j.jcis.2013.01.027. PubMed DOI

Ronzova A.; Sedlacik M.; Cvek M. Magnetorheological Fluids Based on Core-Shell Carbonyl Iron Particles Modified by Various Organosilanes: Synthesis Stability and Performance. Soft Matter 2021, 17 (5), 1299–1306. 10.1039/D0SM01785J. PubMed DOI

Kim Y. H.; Ahn W. J.; Choi H. J.; Seo Y. Fabrication and Magnetic Stimuli-Response of Polydopamine-Coated Core–Shell Structured Carbonyl Iron Microspheres. Colloid Polym. Sci. 2016, 294 (2), 329–337. 10.1007/s00396-015-3786-2. DOI

Choi J. S.; Park B. J.; Cho M. S.; Choi H. J. Preparation and Magnetorheological Characteristics of Polymer Coated Carbonyl Iron Suspensions. J. Magn. Magn. Mater. 2006, 304 (1), e374–e376. 10.1016/j.jmmm.2006.02.055. DOI

Hajalilou A.; Abouzari-Lotf E.; Abbasi-Chianeh V.; Shojaei T. R.; Rezaie E. Inclusion of Octahedron-Shaped ZnFe2O4 Nanoparticles in Combination with Carbon Dots into Carbonyl Iron Based Magnetorheological Suspension as Additive. J. Alloys Compd. 2018, 737, 536–548. 10.1016/j.jallcom.2017.12.071. DOI

Portillo M. A.; Iglesias G. R. Magnetic Nanoparticles as a Redispersing Additive in Magnetorheological Fluid. J. Nanomater. 2017, 2017, 9026219.10.1155/2017/9026219. DOI

Choi J.; Nam K. T.; Kim S.; Seo Y. Synergistic Effects of Nonmagnetic Carbon Nanotubes on the Performance and Stability of Magnetorheological Fluids Containing Carbon Nanotube-Co0.4Fe0.4Ni0.2Nanocomposite Particles. Nano Lett. 2021, 21 (12), 4973–4980. 10.1021/acs.nanolett.1c00674. PubMed DOI

Choi J.; Han S.; Kim H.; Sohn E. H.; Choi H. J.; Seo Y. Suspensions of Hollow Polydivinylbenzene Nanoparticles Decorated with Fe3O4 Nanoparticles as Magnetorheological Fluids for Microfluidics Applications. ACS Appl. Nano Mater. 2019, 2 (11), 6939–6947. 10.1021/acsanm.9b01420. DOI

Zhang P.; Dong Y. Z.; Choi H. J.; Lee C. H. Tribological and Rheological Tests of Core-Shell Typed Carbonyl Iron/Polystyrene Particle-Based Magnetorheological Fluid. J. Ind. Eng. Chem. 2018, 68, 342–349. 10.1016/j.jiec.2018.08.005. DOI

Lee J. W.; Hong K. P.; Kwon S. H.; Choi H. J.; Cho M. W. Suspension Rheology and Magnetorheological Finishing Characteristics of Biopolymer-Coated Carbonyliron Particles. Ind. Eng. Chem. Res. 2017, 56 (9), 2416–2424. 10.1021/acs.iecr.6b03790. DOI

Cvek M.; Mrlík M.; Ilčíková M.; Mosnáček J.; Babayan V.; Kuceková Z.; Humpolíček P.; Pavlínek V. The Chemical Stability and Cytotoxicity of Carbonyl Iron Particles Grafted with Poly(Glycidyl Methacrylate) and the Magnetorheological Activity of Their Suspensions. RSC Adv. 2015, 5 (89), 72816–72824. 10.1039/C5RA11968E. DOI

Sedlacik M.; Plachy T.; Vaclavkova D. The Surface Modification of Magnetic Particles with Polyamidoamine Dendron. AIP Conf. Proc. 2018, 2022, 02001910.1063/1.5060699. DOI

Plachy T.; Cvek M.; Munster L.; Hanulikova B.; Suly P.; Vesel A.; Cheng Q. Enhanced Magnetorheological Effect of Suspensions Based on Carbonyl Iron Particles Coated with Poly(Amidoamine) Dendrons. Rheol. Acta 2021, 60 (5), 263–276. 10.1007/s00397-021-01269-1. DOI

Cvek M.; Kollar J.; Mrlik M.; Masar M.; Suly P.; Urbanek M.; Mosnacek J. Surface-Initiated Mechano-ATRP as a Convenient Tool for Tuning of Bidisperse Magnetorheological Suspensions toward Extreme Kinetic Stability. Polym. Chem. 2021, 12 (35), 5093–5105. 10.1039/D1PY00930C. DOI

Min T. H.; Choi H. J.; Kim N. H.; Park K.; You C. Y. Effects of Surface Treatment on Magnetic Carbonyl Iron/Polyaniline Microspheres and Their Magnetorheological Study. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 531, 48–55. 10.1016/j.colsurfa.2017.07.070. DOI

Mrlik M.; Sedlacik M.; Pavlinek V.; Peer P.; Filip P.; Saha P. Magnetorheology of Carbonyl Iron Particles Coated with Polypyrrole Ribbons: The Steady Shear Study. J. Phys.: Conf. Ser. 2013, 412, 01201610.1088/1742-6596/412/1/012016. DOI

Park B. J.; Kim M. S.; Choi H. J. Fabrication and Magnetorheological Property of Core/Shell Structured Magnetic Composite Particle Encapsulated with Cross-Linked Poly(Methyl Methacrylate). Mater. Lett. 2009, 63 (24–25), 2178–2180. 10.1016/j.matlet.2009.07.036. DOI

Lee J. W.; Hong K. P.; Cho M. W.; Kwon S. H.; Choi H. J. Polishing Characteristics of Optical Glass Using PMMA-Coated Carbonyl-Iron-Based Magnetorheological Fluid. Smart Mater. Struct. 2015, 24 (6), 06500210.1088/0964-1726/24/6/065002. DOI

Quan X.; Chuah W.; Seo Y.; Choi H. J. Core-Shell Structured Polystyrene Coated Carbonyl Iron Microspheres and Their Magnetorheology. IEEE Trans. Magn. 2014, 50 (1), 2500904.10.1109/TMAG.2013.2278291. DOI

Matyjaszewski K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45 (10), 4015–4039. 10.1021/ma3001719. DOI

Matyjaszewski K.; Tsarevsky N. V. Macromolecular Engineering by Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 2014, 136 (18), 6513–6533. 10.1021/ja408069v. PubMed DOI

Machovsky M.; Mrlik M.; Kuritka I.; Pavlinek V.; Babayan V. Novel Synthesis of Core-Shell Urchin-like ZnO Coated Carbonyl Iron Microparticles and Their Magnetorheological Activity. RSC Adv. 2014, 4 (2), 996–1003. 10.1039/C3RA44982C. DOI

Mrlik M.; Ilcikova M.; Sedlacik M.; Mosnacek J.; Peer P.; Filip P. Cholesteryl-Coated Carbonyl Iron Particles with Improved Anti-Corrosion Stability and Their Viscoelastic Behaviour under Magnetic Field. Colloid Polym. Sci. 2014, 292 (9), 2137–2143. 10.1007/s00396-014-3245-5. DOI

Mrlík M.; Ilčíková M.; Plachý T.; Moučka R.; Pavlínek V.; Mosnáček J. Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl methacrylate). J. Ind. Eng. Chem. 2018, 57, 104–112. 10.1016/j.jiec.2017.08.013. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...