Effect of Structure of Polymers Grafted from Graphene Oxide on the Compatibility of Particles with a Silicone-Based Environment and the Stimuli-Responsive Capabilities of Their Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-20361Y
Grantová Agentura České Republiky
NPU I - LO1504
Ministerstvo Školství, Mládeže a Tělovýchovy
313021T081
European Regional Development Fund
2/0129/19
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
CZ.02.2.69/0.0/0.0/16_027/0008464
Operational Program for Research, Development and Education
CZ.1.05/2.1.00/19.0409
European Regional Development Fund
UMO-2016/23/P/ST5/02131
Narodowym Centrum Nauki
PubMed
32213907
PubMed Central
PMC7153385
DOI
10.3390/nano10030591
PII: nano10030591
Knihovny.cz E-zdroje
- Klíčová slova
- SI-ATRP, compatibility, conductivity, grafting, graphene oxide, smart composites,
- Publikační typ
- časopisecké články MeSH
This study reports the utilization of controlled radical polymerization as a tool for controlling the stimuli-responsive capabilities of graphene oxide (GO) based hybrid systems. Various polymer brushes with controlled molecular weight and narrow molecular weight distribution were grafted from the GO surface by surface-initiated atom transfer radical polymerization (SI-ATRP). The modification of GO with poly(n-butyl methacrylate) (PBMA), poly(glycidyl methacrylate) (PGMA), poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) and poly(methyl methacrylate) (PMMA) was confirmed by thermogravimetric analysis (TGA) coupled with online Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Various grafting densities of GO-based materials were investigated, and conductivity was elucidated using a four-point probe method. Raman shift and XPS were used to confirm the reduction of surface properties of the GO particles during SI-ATRP. The contact angle measurements indicated the changes in the compatibility of GOs with silicone oil, depending on the structure of the grafted polymer chains. The compatibility of the GOs with poly(dimethylsiloxane) was also investigated using steady shear rheology. The tunability of the electrorheological, as well as the photo-actuation capability, was investigated. It was shown that in addition to the modification of conductivity, the dipole moment of the pendant groups of the grafted polymer chains also plays an important role in the electrorheological (ER) performance. The compatibility of the particles with the polymer matrix, and thus proper particles dispersibility, is the most important factor for the photo-actuation efficiency. The plasticizing effect of the GO-polymer hybrid filler also has a crucial impact on the matrix stiffness and thus the ability to reversibly respond to the external light stimulation.
Zobrazit více v PubMed
Bockstaller M.R., Mickiewicz R.A., Thomas E.L. Block copolymer nanocomposites: Perspectives for tailored functional materials. Adv. Mater. 2005;17:1331–1349. doi: 10.1002/adma.200500167. PubMed DOI
Grubbs R.B. Roles of polymer ligands in nanoparticle stabilization. Polym. Rev. 2007;47:197–215. doi: 10.1080/15583720701271245. DOI
Balazs A.C., Emrick T., Russell T.P. Nanoparticle polymer composites: Where two small worlds meet. Science. 2006;314:1107–1110. doi: 10.1126/science.1130557. PubMed DOI
Niu D., Jiang W.T., Ye G.Y., Lei B., Luo F., Liu H.Z., Lu B.H. Photothermally triggered soft robot with adaptive local deformations and versatile bending modes. Smart Mater. Struct. 2019;28:02LT01. doi: 10.1088/1361-665X/aad8f3. DOI
Huang Z.J., Li L., Zhang X.A., Alsharif N., Wu X.J., Peng Z.W., Cheng X.Y., Wang P., Brown K.A., Wang Y.H. Photoactuated Pens for Molecular Printing. Adv. Mater. 2018;30:1705303. doi: 10.1002/adma.201705303. PubMed DOI
Zhang X., Yu Z.B., Wang C., Zarrouk D., Seo J.W.T., Cheng J.C., Buchan A.D., Takei K., Zhao Y., Ager J.W., et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014;5:1–8. doi: 10.1038/ncomms3983. PubMed DOI
Kraus-Ophir S., Ben-Shahar Y., Banin U., Mandler D. Perpendicular Orientation of Anisotropic Au-Tipped CdS Nanorods at the Air/Water Interface. Adv. Mater. Interfaces. 2014;1:1300030. doi: 10.1002/admi.201300030. DOI
Lendlein A., Sauter T. Shape-Memory Effect in Polymers. Macromol. Chem. Phys. 2013;214:1175–1177. doi: 10.1002/macp.201300098. DOI
Ahir S.V., Squires A.M., Tajbakhsh A.R., Terentjev E.M. Infrared actuation in aligned polymer-nanotube composites. Phys. Rev. B. 2006;73:085420. doi: 10.1103/PhysRevB.73.085420. DOI
Ilcikova M., Mrlik M., Sedlacek T., Doroshenko M., Koynov K., Danko M., Mosnacek J. Tailoring of viscoelastic properties and light-induced actuation performance of triblock copolymer composites through surface modification of carbon nanotubes. Polymer. 2015;72:368–377. doi: 10.1016/j.polymer.2015.03.060. DOI
Ilcikova M., Mrlik M., Sedlacek T., Slouf M., Zhigunov A., Koynov K., Mosnacek J. Synthesis of Photoactuating Acrylic Thermoplastic Elastomers Containing Diblock Copolymer-Grafted Carbon Nanotubes. ACS Macro Lett. 2014;3:999–1003. doi: 10.1021/mz500444m. PubMed DOI
Czanikova K., Ilcikova M., Krupa I., Micusik M., Kasak P., Pavlova E., Mosnacek J., Chorvat D., Omastova M. Elastomeric photo-actuators and their investigation by confocal laser scanning microscopy. Smart Mater. Struct. 2013;22:104001. doi: 10.1088/0964-1726/22/10/104001. DOI
Czanikova K., Krupa I., Ilcikova M., Kasak P., Chorvat D., Valentin M., Slouf M., Mosnacek J., Micusik M., Omastova M. Photo-actuating materials based on elastomers and modified carbon nanotubes. J. Nanophotonics. 2012;6:063522. doi: 10.1117/1.JNP.6.063522. DOI
Liang X.D., Zhang Z., Sathisha A., Cai S.Q., Bandaru P.R. Light induced reversible and irreversible mechanical responses in nanotube-polymer composites. Compos. Part B Eng. 2018;134:39–45. doi: 10.1016/j.compositesb.2017.09.036. DOI
Ilcikova M., Mrlik M., Sedlacek T., Chorvat D., Krupa I., Slouf M., Koynov K., Mosnacek J. Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene-b-styrene block copolymer. Polymer. 2014;55:211–218. doi: 10.1016/j.polymer.2013.11.031. DOI
Li C.S., Liu Y., Lo C.W., Jiang H.R. Reversible white-light actuation of carbon nanotube incorporated liquid crystalline elastomer nanocomposites. Soft Matter. 2011;7:7511–7516. doi: 10.1039/c1sm05776f. DOI
Braun L.B., Hessberger T., Putz E., Muller C., Giesselmann F., Serra C.A., Zentel R. Actuating thermo- and photo-responsive tubes from liquid crystalline elastomers. J. Mater. Chem. C. 2018;6:9093–9101. doi: 10.1039/C8TC02873G. DOI
Liu L., Onck P.R. Light-driven topographical morphing of azobenzene-doped liquid crystal polymer films via tunable photo-polymerization induced diffusion. J. Mech. Phys. Solids. 2019;123:247–266. doi: 10.1016/j.jmps.2018.09.021. DOI
Braun L.B., Linder T.G., Hessberger T., Zentel R. Influence of a Crosslinker Containing an Azo Group on the Actuation Properties of a Photoactuating LCE System. Polymers. 2016;8:435. doi: 10.3390/polym8120435. PubMed DOI PMC
Lee K.M., Wang D., Koerner H., Vaia R.A., Tan L., White T. Photomechanical Response of Pre-strained Azobenzene-Functionalized Polyimide Materials. Macromol. Chem. Phys. 2013;214:1189–1194. doi: 10.1002/macp.201200340. DOI
Osicka J., Mrlik M., Ilcikova M., Hanulikova B., Urbanek P., Sedlacik M., Mosnacek J. Reversible Actuation Ability upon Light Stimulation of the Smart Systems with Controllably Grafted Graphene Oxide with Poly (Glycidyl Methacrylate) and PDMS Elastomer: Effect of Compatibility and Graphene Oxide Reduction on the Photo-Actuation Performance. Polymers. 2018;10:832. doi: 10.3390/polym10080832. PubMed DOI PMC
Osicka J., Mrlik M., Ilcikova M., Munster L., Bazant P., Spitalsky Z., Mosnacek J. Light-Induced Actuation of Poly(dimethylsiloxane) Filled with Graphene Oxide Grafted with Poly(2-(trimethylsilyloxy)ethyl Methacrylate) Polymers. 2018;10:1059. doi: 10.3390/polym10101059. PubMed DOI PMC
Leeladhar, Singh J.P. Photomechanical and Chemomechanical Actuation Behavior of Graphene-Poly(dimethylsiloxane)/Gold Bilayer Tube for Multimode Soft Grippers and Volatile Organic Compounds Detection Applications. ACS Appl. Mater. Interfaces. 2018;10:33956–33965. doi: 10.1021/acsami.8b11440. PubMed DOI
Ahir S.V., Huang Y.Y., Terentjev E. Polymers with aligned carbon nanotubes: Active composite materials. Polymer. 2008;49:3841–3854. doi: 10.1016/j.polymer.2008.05.005. DOI
Loomis J., King B., Burkhead T., Xu P., Bessler N., Terentjev E., Panchapakesan B. Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology. 2012;23:045501. doi: 10.1088/0957-4484/23/4/045501. PubMed DOI
Kuilla T., Bhadra S., Yao D.H., Kim N.H., Bose S., Lee J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010;35:1350–1375. doi: 10.1016/j.progpolymsci.2010.07.005. DOI
Osicka J., Ilcikova M., Mrlik M., Minarik A., Pavlinek V., Mosnacek J. The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites. Polymers. 2017;9:264. doi: 10.3390/polym9070264. PubMed DOI PMC
Huang X., Qi X.Y., Boey F., Zhang H. Graphene-based composites. Chem. Soc. Rev. 2012;41:666–686. doi: 10.1039/C1CS15078B. PubMed DOI
Zhu Y.W., Murali S., Cai W., Li X.S., Suk J.W., Potts J.R., Ruoff R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010;22:3906–3924. doi: 10.1002/adma.201001068. PubMed DOI
Compton O.C., Nguyen S.T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small. 2010;6:711–723. doi: 10.1002/smll.200901934. PubMed DOI
Seyedin S., Razal J.M., Innis P.C., Jalili R., Wallace G.G. Compositional Effects of Large Graphene Oxide Sheets on the Spinnability and Properties of Polyurethane Composite Fibers. Adv. Mater. Interfaces. 2016;3:1500672. doi: 10.1002/admi.201500672. DOI
Spitalsky Z., Danko M., Mosnacek J. Preparation of Functionalized Graphene Sheets. Curr. Org. Chem. 2011;15:1133–1150. doi: 10.2174/138527211795202988. DOI
Yang J.X., Liang H.Y., Zeng L.H., Liu S., Guo T.Y. Facile Fabrication of Superhydrophobic Nanocomposite Coatings Based on Water-Based Emulsion Latex. Adv. Mater. Interfaces. 2018;5:1800207. doi: 10.1002/admi.201800207. DOI
Pyun J., Kowalewski T., Matyjaszewski K. Synthesis of polymer brushes using atom transfer radical polymerization. Macromol. Rapid Commun. 2003;24:1043–1059. doi: 10.1002/marc.200300078. DOI
Hui C.M., Pietrasik J., Schmitt M., Mahoney C., Choi J., Bockstaller M.R., Matyjaszewski K. Surface-Initiated Polymerization as an Enabling Tool for Multifunctional (Nano-)Engineered Hybrid Materials. Chem. Mater. 2014;26:745–762. doi: 10.1021/cm4023634. DOI
Mrlik M., Ilcikova M., Plachy T., Pavlinek V., Spitalsky Z., Mosnacek J. Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties. Chem. Eng. J. 2016;283:717–720. doi: 10.1016/j.cej.2015.08.013. DOI
Ilcikova M., Mrlik M., Babayan V., Kasak P. Graphene oxide modified by betaine moieties for improvement of electrorheological performance. RSC Adv. 2015;5:57820–57827. doi: 10.1039/C5RA08403B. DOI
Zhang W.L., Choi H.J. Graphene oxide based smart fluids. Soft Matter. 2014;10:6601–6608. doi: 10.1039/C4SM01151A. PubMed DOI
Chen P.P., Cheng Q.Q., Wang L.M., Liu Y.D., Choi H.J. Fabrication of dual-coated graphene oxide nanosheets by polypyrrole and poly(ionic liquid) and their enhanced electrorheological responses. J. Ind. Eng. Chem. 2019;69:106–115. doi: 10.1016/j.jiec.2018.09.022. DOI
Mrlik M., Pavlinek V., Cheng Q.L., Saha P. Synthesis of titanate/polypyrrole composite rod-like particles and the role of conducting polymer on electrorheological efficiency. Int. J. Mod. Phys. B. 2012;26:1250007. doi: 10.1142/S0217979212500075. DOI
Mrlik M., Cvek M., Osicka J., Moucka R., Sedlacik M., Pavlinek V. Surface-initiated atom transfer radical polymerization from graphene oxide: A way towards fine tuning of electric conductivity and electro-responsive capabilities. Mater. Lett. 2018;211:138–141. doi: 10.1016/j.matlet.2017.09.107. DOI
Mrlik M., Ilcikova M., Plachy T., Moucka R., Pavlinek V., Mosnacek J. Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl methacrylate) J. Ind. Eng. Chem. 2018;57:104–112. doi: 10.1016/j.jiec.2017.08.013. DOI
Ji Y., Xing Y.F., Li X.Q., Shao L.H. Dual-Stimuli Responsive Carbon Nanotube Sponge-PDMS Amphibious Actuator. Nanomaterials. 2019;9:1704. doi: 10.3390/nano9121704. PubMed DOI PMC
Kwon S.H., Piao S.H., Choi H.J. Electric Field-Responsive Mesoporous Suspensions: A Review. Nanomaterials. 2015;5:2249–2267. doi: 10.3390/nano5042249. PubMed DOI PMC
Kutalkova E., Mrlik M., Ilcikova M., Osicka J., Sedlacik M., Mosnacek J. Enhanced and Tunable Electrorheological Capability using Surface Initiated Atom Transfer Radical Polymerization Modification with Simultaneous Reduction of the Graphene Oxide by Silyl-Based Polymer Grafting. Nanomaterials. 2019;9:308. doi: 10.3390/nano9020308. PubMed DOI PMC
Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI
Vasile E., Pandele A.M., Andronescu C., Selaru A., Dinescu S., Costache M., Hanganu A., Raicopol M.D., Teodorescu M. Hema-Functionalized Graphene Oxide: A Versatile Nanofiller for Poly(Propylene Fumarate)-Based Hybrid Materials. Sci. Rep. 2019;9:1–5. doi: 10.1038/s41598-019-55081-2. PubMed DOI PMC
Davis L.C. Polarization Forces and Conductivity Effects in Electrorheological Fluids. J. Appl. Phys. 1992;72:1334–1340. doi: 10.1063/1.351743. DOI
Parthasarathy M., Klingenberg D.J. Electrorheology: Mechanisms and models. Mater. Sci. Eng. R Rep. 1996;17:57–103. doi: 10.1016/0927-796X(96)00191-X. DOI
Cvek M., Mrlik M., Ilcikova M., Mosnacek J., Munster L., Pavlinek V. Synthesis of Silicone Elastomers Containing Silyl-Based Polymer Grafted Carbonyl Iron Particles: An Efficient Way To Improve Magnetorheological, Damping, and Sensing Performances. Macromolecules. 2017;50:2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI
Krupa I., Sobolčiak P., Mrlik M. Smart Non-Woven Fiber Mats with Light-Induced Sensing Capability. Nanomaterials. 2020;10:77. doi: 10.3390/nano10010077. PubMed DOI PMC
Osicka J., Mrlik M., Ilcikova M., Krupa I., Sobolciak P., Plachý T., Mosnacek J. Controllably coated graphene oxide particles with enhanced compatibility with poly (ethylene-co-propylene) thermoplastic elastomer for excellent photo-mechanical actuation capability. React. Funct. Polym. 2020;148:104487. doi: 10.1016/j.reactfunctpolym.2020.104487. DOI