Effect of Structure of Polymers Grafted from Graphene Oxide on the Compatibility of Particles with a Silicone-Based Environment and the Stimuli-Responsive Capabilities of Their Composites

. 2020 Mar 24 ; 10 (3) : . [epub] 20200324

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32213907

Grantová podpora
16-20361Y Grantová Agentura České Republiky
NPU I - LO1504 Ministerstvo Školství, Mládeže a Tělovýchovy
313021T081 European Regional Development Fund
2/0129/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
CZ.02.2.69/0.0/0.0/16_027/0008464 Operational Program for Research, Development and Education
CZ.1.05/2.1.00/19.0409 European Regional Development Fund
UMO-2016/23/P/ST5/02131 Narodowym Centrum Nauki

This study reports the utilization of controlled radical polymerization as a tool for controlling the stimuli-responsive capabilities of graphene oxide (GO) based hybrid systems. Various polymer brushes with controlled molecular weight and narrow molecular weight distribution were grafted from the GO surface by surface-initiated atom transfer radical polymerization (SI-ATRP). The modification of GO with poly(n-butyl methacrylate) (PBMA), poly(glycidyl methacrylate) (PGMA), poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) and poly(methyl methacrylate) (PMMA) was confirmed by thermogravimetric analysis (TGA) coupled with online Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Various grafting densities of GO-based materials were investigated, and conductivity was elucidated using a four-point probe method. Raman shift and XPS were used to confirm the reduction of surface properties of the GO particles during SI-ATRP. The contact angle measurements indicated the changes in the compatibility of GOs with silicone oil, depending on the structure of the grafted polymer chains. The compatibility of the GOs with poly(dimethylsiloxane) was also investigated using steady shear rheology. The tunability of the electrorheological, as well as the photo-actuation capability, was investigated. It was shown that in addition to the modification of conductivity, the dipole moment of the pendant groups of the grafted polymer chains also plays an important role in the electrorheological (ER) performance. The compatibility of the particles with the polymer matrix, and thus proper particles dispersibility, is the most important factor for the photo-actuation efficiency. The plasticizing effect of the GO-polymer hybrid filler also has a crucial impact on the matrix stiffness and thus the ability to reversibly respond to the external light stimulation.

Zobrazit více v PubMed

Bockstaller M.R., Mickiewicz R.A., Thomas E.L. Block copolymer nanocomposites: Perspectives for tailored functional materials. Adv. Mater. 2005;17:1331–1349. doi: 10.1002/adma.200500167. PubMed DOI

Grubbs R.B. Roles of polymer ligands in nanoparticle stabilization. Polym. Rev. 2007;47:197–215. doi: 10.1080/15583720701271245. DOI

Balazs A.C., Emrick T., Russell T.P. Nanoparticle polymer composites: Where two small worlds meet. Science. 2006;314:1107–1110. doi: 10.1126/science.1130557. PubMed DOI

Niu D., Jiang W.T., Ye G.Y., Lei B., Luo F., Liu H.Z., Lu B.H. Photothermally triggered soft robot with adaptive local deformations and versatile bending modes. Smart Mater. Struct. 2019;28:02LT01. doi: 10.1088/1361-665X/aad8f3. DOI

Huang Z.J., Li L., Zhang X.A., Alsharif N., Wu X.J., Peng Z.W., Cheng X.Y., Wang P., Brown K.A., Wang Y.H. Photoactuated Pens for Molecular Printing. Adv. Mater. 2018;30:1705303. doi: 10.1002/adma.201705303. PubMed DOI

Zhang X., Yu Z.B., Wang C., Zarrouk D., Seo J.W.T., Cheng J.C., Buchan A.D., Takei K., Zhao Y., Ager J.W., et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014;5:1–8. doi: 10.1038/ncomms3983. PubMed DOI

Kraus-Ophir S., Ben-Shahar Y., Banin U., Mandler D. Perpendicular Orientation of Anisotropic Au-Tipped CdS Nanorods at the Air/Water Interface. Adv. Mater. Interfaces. 2014;1:1300030. doi: 10.1002/admi.201300030. DOI

Lendlein A., Sauter T. Shape-Memory Effect in Polymers. Macromol. Chem. Phys. 2013;214:1175–1177. doi: 10.1002/macp.201300098. DOI

Ahir S.V., Squires A.M., Tajbakhsh A.R., Terentjev E.M. Infrared actuation in aligned polymer-nanotube composites. Phys. Rev. B. 2006;73:085420. doi: 10.1103/PhysRevB.73.085420. DOI

Ilcikova M., Mrlik M., Sedlacek T., Doroshenko M., Koynov K., Danko M., Mosnacek J. Tailoring of viscoelastic properties and light-induced actuation performance of triblock copolymer composites through surface modification of carbon nanotubes. Polymer. 2015;72:368–377. doi: 10.1016/j.polymer.2015.03.060. DOI

Ilcikova M., Mrlik M., Sedlacek T., Slouf M., Zhigunov A., Koynov K., Mosnacek J. Synthesis of Photoactuating Acrylic Thermoplastic Elastomers Containing Diblock Copolymer-Grafted Carbon Nanotubes. ACS Macro Lett. 2014;3:999–1003. doi: 10.1021/mz500444m. PubMed DOI

Czanikova K., Ilcikova M., Krupa I., Micusik M., Kasak P., Pavlova E., Mosnacek J., Chorvat D., Omastova M. Elastomeric photo-actuators and their investigation by confocal laser scanning microscopy. Smart Mater. Struct. 2013;22:104001. doi: 10.1088/0964-1726/22/10/104001. DOI

Czanikova K., Krupa I., Ilcikova M., Kasak P., Chorvat D., Valentin M., Slouf M., Mosnacek J., Micusik M., Omastova M. Photo-actuating materials based on elastomers and modified carbon nanotubes. J. Nanophotonics. 2012;6:063522. doi: 10.1117/1.JNP.6.063522. DOI

Liang X.D., Zhang Z., Sathisha A., Cai S.Q., Bandaru P.R. Light induced reversible and irreversible mechanical responses in nanotube-polymer composites. Compos. Part B Eng. 2018;134:39–45. doi: 10.1016/j.compositesb.2017.09.036. DOI

Ilcikova M., Mrlik M., Sedlacek T., Chorvat D., Krupa I., Slouf M., Koynov K., Mosnacek J. Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene-b-styrene block copolymer. Polymer. 2014;55:211–218. doi: 10.1016/j.polymer.2013.11.031. DOI

Li C.S., Liu Y., Lo C.W., Jiang H.R. Reversible white-light actuation of carbon nanotube incorporated liquid crystalline elastomer nanocomposites. Soft Matter. 2011;7:7511–7516. doi: 10.1039/c1sm05776f. DOI

Braun L.B., Hessberger T., Putz E., Muller C., Giesselmann F., Serra C.A., Zentel R. Actuating thermo- and photo-responsive tubes from liquid crystalline elastomers. J. Mater. Chem. C. 2018;6:9093–9101. doi: 10.1039/C8TC02873G. DOI

Liu L., Onck P.R. Light-driven topographical morphing of azobenzene-doped liquid crystal polymer films via tunable photo-polymerization induced diffusion. J. Mech. Phys. Solids. 2019;123:247–266. doi: 10.1016/j.jmps.2018.09.021. DOI

Braun L.B., Linder T.G., Hessberger T., Zentel R. Influence of a Crosslinker Containing an Azo Group on the Actuation Properties of a Photoactuating LCE System. Polymers. 2016;8:435. doi: 10.3390/polym8120435. PubMed DOI PMC

Lee K.M., Wang D., Koerner H., Vaia R.A., Tan L., White T. Photomechanical Response of Pre-strained Azobenzene-Functionalized Polyimide Materials. Macromol. Chem. Phys. 2013;214:1189–1194. doi: 10.1002/macp.201200340. DOI

Osicka J., Mrlik M., Ilcikova M., Hanulikova B., Urbanek P., Sedlacik M., Mosnacek J. Reversible Actuation Ability upon Light Stimulation of the Smart Systems with Controllably Grafted Graphene Oxide with Poly (Glycidyl Methacrylate) and PDMS Elastomer: Effect of Compatibility and Graphene Oxide Reduction on the Photo-Actuation Performance. Polymers. 2018;10:832. doi: 10.3390/polym10080832. PubMed DOI PMC

Osicka J., Mrlik M., Ilcikova M., Munster L., Bazant P., Spitalsky Z., Mosnacek J. Light-Induced Actuation of Poly(dimethylsiloxane) Filled with Graphene Oxide Grafted with Poly(2-(trimethylsilyloxy)ethyl Methacrylate) Polymers. 2018;10:1059. doi: 10.3390/polym10101059. PubMed DOI PMC

Leeladhar, Singh J.P. Photomechanical and Chemomechanical Actuation Behavior of Graphene-Poly(dimethylsiloxane)/Gold Bilayer Tube for Multimode Soft Grippers and Volatile Organic Compounds Detection Applications. ACS Appl. Mater. Interfaces. 2018;10:33956–33965. doi: 10.1021/acsami.8b11440. PubMed DOI

Ahir S.V., Huang Y.Y., Terentjev E. Polymers with aligned carbon nanotubes: Active composite materials. Polymer. 2008;49:3841–3854. doi: 10.1016/j.polymer.2008.05.005. DOI

Loomis J., King B., Burkhead T., Xu P., Bessler N., Terentjev E., Panchapakesan B. Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology. 2012;23:045501. doi: 10.1088/0957-4484/23/4/045501. PubMed DOI

Kuilla T., Bhadra S., Yao D.H., Kim N.H., Bose S., Lee J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010;35:1350–1375. doi: 10.1016/j.progpolymsci.2010.07.005. DOI

Osicka J., Ilcikova M., Mrlik M., Minarik A., Pavlinek V., Mosnacek J. The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites. Polymers. 2017;9:264. doi: 10.3390/polym9070264. PubMed DOI PMC

Huang X., Qi X.Y., Boey F., Zhang H. Graphene-based composites. Chem. Soc. Rev. 2012;41:666–686. doi: 10.1039/C1CS15078B. PubMed DOI

Zhu Y.W., Murali S., Cai W., Li X.S., Suk J.W., Potts J.R., Ruoff R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010;22:3906–3924. doi: 10.1002/adma.201001068. PubMed DOI

Compton O.C., Nguyen S.T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small. 2010;6:711–723. doi: 10.1002/smll.200901934. PubMed DOI

Seyedin S., Razal J.M., Innis P.C., Jalili R., Wallace G.G. Compositional Effects of Large Graphene Oxide Sheets on the Spinnability and Properties of Polyurethane Composite Fibers. Adv. Mater. Interfaces. 2016;3:1500672. doi: 10.1002/admi.201500672. DOI

Spitalsky Z., Danko M., Mosnacek J. Preparation of Functionalized Graphene Sheets. Curr. Org. Chem. 2011;15:1133–1150. doi: 10.2174/138527211795202988. DOI

Yang J.X., Liang H.Y., Zeng L.H., Liu S., Guo T.Y. Facile Fabrication of Superhydrophobic Nanocomposite Coatings Based on Water-Based Emulsion Latex. Adv. Mater. Interfaces. 2018;5:1800207. doi: 10.1002/admi.201800207. DOI

Pyun J., Kowalewski T., Matyjaszewski K. Synthesis of polymer brushes using atom transfer radical polymerization. Macromol. Rapid Commun. 2003;24:1043–1059. doi: 10.1002/marc.200300078. DOI

Hui C.M., Pietrasik J., Schmitt M., Mahoney C., Choi J., Bockstaller M.R., Matyjaszewski K. Surface-Initiated Polymerization as an Enabling Tool for Multifunctional (Nano-)Engineered Hybrid Materials. Chem. Mater. 2014;26:745–762. doi: 10.1021/cm4023634. DOI

Mrlik M., Ilcikova M., Plachy T., Pavlinek V., Spitalsky Z., Mosnacek J. Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties. Chem. Eng. J. 2016;283:717–720. doi: 10.1016/j.cej.2015.08.013. DOI

Ilcikova M., Mrlik M., Babayan V., Kasak P. Graphene oxide modified by betaine moieties for improvement of electrorheological performance. RSC Adv. 2015;5:57820–57827. doi: 10.1039/C5RA08403B. DOI

Zhang W.L., Choi H.J. Graphene oxide based smart fluids. Soft Matter. 2014;10:6601–6608. doi: 10.1039/C4SM01151A. PubMed DOI

Chen P.P., Cheng Q.Q., Wang L.M., Liu Y.D., Choi H.J. Fabrication of dual-coated graphene oxide nanosheets by polypyrrole and poly(ionic liquid) and their enhanced electrorheological responses. J. Ind. Eng. Chem. 2019;69:106–115. doi: 10.1016/j.jiec.2018.09.022. DOI

Mrlik M., Pavlinek V., Cheng Q.L., Saha P. Synthesis of titanate/polypyrrole composite rod-like particles and the role of conducting polymer on electrorheological efficiency. Int. J. Mod. Phys. B. 2012;26:1250007. doi: 10.1142/S0217979212500075. DOI

Mrlik M., Cvek M., Osicka J., Moucka R., Sedlacik M., Pavlinek V. Surface-initiated atom transfer radical polymerization from graphene oxide: A way towards fine tuning of electric conductivity and electro-responsive capabilities. Mater. Lett. 2018;211:138–141. doi: 10.1016/j.matlet.2017.09.107. DOI

Mrlik M., Ilcikova M., Plachy T., Moucka R., Pavlinek V., Mosnacek J. Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl methacrylate) J. Ind. Eng. Chem. 2018;57:104–112. doi: 10.1016/j.jiec.2017.08.013. DOI

Ji Y., Xing Y.F., Li X.Q., Shao L.H. Dual-Stimuli Responsive Carbon Nanotube Sponge-PDMS Amphibious Actuator. Nanomaterials. 2019;9:1704. doi: 10.3390/nano9121704. PubMed DOI PMC

Kwon S.H., Piao S.H., Choi H.J. Electric Field-Responsive Mesoporous Suspensions: A Review. Nanomaterials. 2015;5:2249–2267. doi: 10.3390/nano5042249. PubMed DOI PMC

Kutalkova E., Mrlik M., Ilcikova M., Osicka J., Sedlacik M., Mosnacek J. Enhanced and Tunable Electrorheological Capability using Surface Initiated Atom Transfer Radical Polymerization Modification with Simultaneous Reduction of the Graphene Oxide by Silyl-Based Polymer Grafting. Nanomaterials. 2019;9:308. doi: 10.3390/nano9020308. PubMed DOI PMC

Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI

Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI

Vasile E., Pandele A.M., Andronescu C., Selaru A., Dinescu S., Costache M., Hanganu A., Raicopol M.D., Teodorescu M. Hema-Functionalized Graphene Oxide: A Versatile Nanofiller for Poly(Propylene Fumarate)-Based Hybrid Materials. Sci. Rep. 2019;9:1–5. doi: 10.1038/s41598-019-55081-2. PubMed DOI PMC

Davis L.C. Polarization Forces and Conductivity Effects in Electrorheological Fluids. J. Appl. Phys. 1992;72:1334–1340. doi: 10.1063/1.351743. DOI

Parthasarathy M., Klingenberg D.J. Electrorheology: Mechanisms and models. Mater. Sci. Eng. R Rep. 1996;17:57–103. doi: 10.1016/0927-796X(96)00191-X. DOI

Cvek M., Mrlik M., Ilcikova M., Mosnacek J., Munster L., Pavlinek V. Synthesis of Silicone Elastomers Containing Silyl-Based Polymer Grafted Carbonyl Iron Particles: An Efficient Way To Improve Magnetorheological, Damping, and Sensing Performances. Macromolecules. 2017;50:2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI

Krupa I., Sobolčiak P., Mrlik M. Smart Non-Woven Fiber Mats with Light-Induced Sensing Capability. Nanomaterials. 2020;10:77. doi: 10.3390/nano10010077. PubMed DOI PMC

Osicka J., Mrlik M., Ilcikova M., Krupa I., Sobolciak P., Plachý T., Mosnacek J. Controllably coated graphene oxide particles with enhanced compatibility with poly (ethylene-co-propylene) thermoplastic elastomer for excellent photo-mechanical actuation capability. React. Funct. Polym. 2020;148:104487. doi: 10.1016/j.reactfunctpolym.2020.104487. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...